Thanks for writing this. It’s relevant to my shortform posts on what I call “mentitation.”
To solve via mental rotation, you have to “upload” a 3D representation of all six shapes. Then you have to perform (edit: per cata, up to 15) comparisons, storing the rotated shapes and viewing them side by side.
With the amount of crucial detail in each shape, that’s probably beyond the working memory of most people. As you found, it’s not the simplest way to solve the puzzle. I wonder if there’s an alternative puzzle design that would actually be bottlenecked by the player’s mental rotation ability.
That doesn’t seem right—to solve it via pure rotation, you would need to do up to 5 + 4 + 3 + 2 + 1 rotations, looking at each pair once, not 6!. Not at all unrealistic.
You are right on the match, good catch and thanks.
I do still think that working memory constraints make it unrealistic to think that it might be more efficient to perform up to 15 mental rotations than to use vitaliya’s tricks.
Glad you liked it! The times when the task is most difficult to use heuristics for are when the shape is partially obscured by itself due to the viewing angle (e.g. below), so you don’t always have complete information about the shape. So to my mind a first pass would be intentionally obscuring a section of the view of each block—but even then, it’s not really immune to the issue.
Ultimately the heuristic-forming is what turns deliberate System 2 thinking into automatic System 1 thinking, but we don’t have direct control over that process. So long as it matches predicted reward, that’s the thing that matters. And so long as mental rotation would reliably solve the problem, there is almost always going to be a set of heuristics that solves the same problem faster. The question is whether the learned heuristics generalise outside of the training set of the game.
Ultimately the heuristic-forming is what turns deliberate System 2 thinking into automatic System 1 thinking, but we don’t have direct control over that process. So long as it matches predicted reward, that’s the thing that matters. And so long as mental rotation would reliably solve the problem, there is almost always going to be a set of heuristics that solves the same problem faster. The question is whether the learned heuristics generalise outside of the training set of the game.
That’s an interesting thought. It suggests a rule:
Any form of mental exercise will eventually be replaced by a narrow heuristic.
Thanks for writing this. It’s relevant to my shortform posts on what I call “mentitation.”
To solve via mental rotation, you have to “upload” a 3D representation of all six shapes. Then you have to perform (edit: per cata, up to 15) comparisons, storing the rotated shapes and viewing them side by side.
With the amount of crucial detail in each shape, that’s probably beyond the working memory of most people. As you found, it’s not the simplest way to solve the puzzle. I wonder if there’s an alternative puzzle design that would actually be bottlenecked by the player’s mental rotation ability.
That doesn’t seem right—to solve it via pure rotation, you would need to do up to 5 + 4 + 3 + 2 + 1 rotations, looking at each pair once, not 6!. Not at all unrealistic.
You are right on the match, good catch and thanks.
I do still think that working memory constraints make it unrealistic to think that it might be more efficient to perform up to 15 mental rotations than to use vitaliya’s tricks.
Glad you liked it! The times when the task is most difficult to use heuristics for are when the shape is partially obscured by itself due to the viewing angle (e.g. below), so you don’t always have complete information about the shape. So to my mind a first pass would be intentionally obscuring a section of the view of each block—but even then, it’s not really immune to the issue.
Ultimately the heuristic-forming is what turns deliberate System 2 thinking into automatic System 1 thinking, but we don’t have direct control over that process. So long as it matches predicted reward, that’s the thing that matters. And so long as mental rotation would reliably solve the problem, there is almost always going to be a set of heuristics that solves the same problem faster. The question is whether the learned heuristics generalise outside of the training set of the game.
That’s an interesting thought. It suggests a rule:
Any form of mental exercise will eventually be replaced by a narrow heuristic.