Object level comment: Antibiotic resistance is bad, this is likely to make it worse, probably without saving lives. You probably shouldn’t self-medicate with antibiotics, you definitely shouldn’t give them to others without knowing more about medical diagnosis.
I’ve certainly heard arguments along those lines before. They seem like obvious bullshit. Evidence: in most of the world, antibiotics are readily available over-the-counter, and yet I don’t hear about most of the world’s human-infecting bacteria becoming antibiotic resistant. Most of the world continues to use antibiotics, as a self-medication, and year after year they keep mostly working.
It seems to me like a very strong analogue to Oregon and New Jersey’s laws about pumping your own gas. Both of those states don’t allow it, which the rest of us know is completely stupid, but there’s still somehow a debate about it because lots of people make up reasons why it would be very dangerous to allow people to pump their own gas.
“yet I don’t hear about most of the world’s human-infecting bacteria becoming antibiotic resistant”
You’re not paying attention, or looking for the evidence—it’s not covered by the news, because of course they ignore gradual threats that pose minor inconveniences. But there is a lot of academic work on this. Even on short time scales, changing resistance is observable.The problem isn’t small. According to that last link, at this point, every year more people are killed due to antibiotic resistance than are killed by Malaria. And unlike Malaria, the trends are getting worse. I’m sure you can argue about the exact numbers, but unlike pumping gas, it’s a classic collective action problem were individual acts harm themselves too little to be noticed, and erodes a global commons that we can’t easily replenish or replace.
The “most” was doing key work in that sentence you quoted.
I totally buy that antiobiotic resistance is a large and growing problem. The part which seems like obvious bullshit is the claim that the cost outweighs the benefit, or is even remotely on the same order of magnitude, especially when we’re talking about an area like sub-Saharan Africa. Do any of those studies have a cost-benefit analysis?
(Also, side note: antibiotic resistance is totally in the news regularly. Here’s one from yesterday.)
Cost-benefit analysis is a very weak tool here, since costs are very hard to assess, long term, and uncertain, and in every individual case, it’s worth it because it’s a collective action problem and others are doing it wrong already.
There are estimates of the cost of antibiotic resistance, for example, almost $5b/year in the US alone. So from a collective action standpoint, if you assume that all agents are going to follow a policy, you at the very least only want to prescribe specific antibiotics when they are clinically useful—and even if you’re not running tests, etc. you need to know a really significant amount to know which antibiotics to use for which set of symptoms, and you should only prescribe them if there’s a pretty significant chance of full compliance. Hence the DOTS regime for TB—WHO guidelines require observing the patient taking each dose, not just prescribing it.
As a general rule of thumb it’s correct. Antibiotic resistance is a growing problem—it’s your basic red queen situation. We’re currently far ahead, but bacteria are catching up. This film is a pretty way of showing it happen (sort of) live. MRSA is causing more and more problems, especially as it tends to pop up in places where vulnerable people are (since that’s where it gets its resistance in the first place). It helps that there are different families of antibiotics, so if a strain is resistant to one of them, you can switch to a different kind. Though this paper suggests that each class works for ~50 years (I’m not a microbiologist and don’t know how true that is, though it fits with my priors). So it’s a valid issue, especially in the context of livestock, where it’s common to mix in antibiotics with the food (as each day ill is a day not growing).
That being said, this is mainly a problem in developed countries with ample access to antibiotics, which is a totally different case from the one you’re making. You could even say that it bolsters your idea, as why not send the weakened versions somewhere where they still have a chance of working?
I’m not sure that availability of antibiotics OTC in most of the world is good evidence that they don’t pose a problem. The main danger of gasoline is that it could catch on fire. It’s easy to see cause and effect if that were happening. If OTC antibiotic use was causing problems, that would require epidemiologists to figure out, and a political solution to fix. I’m not confident that most of the world is well-positioned to catch and fix any issues that may be arising from OTC antibiotic sales.
There’s reason to ask about the relative contributions to drug resistance of self-medication at home, hospital antibiotic use, and antibiotic use on factory farms. We hear about drug resistance mostly in hospitals, but I’d want to check whether this is reporting bias before believing that hospitals are the main drivers of antibiotic resistance.
I’d also question the degree to which antibiotic resistant bacteria can be “trafficked” from place to place. If antibiotic resistant bacteria develop inside a hospital, does that make the bacteria that people pick up outside of the hospital more likely to be drug resistant?
I wouldn’t be too surprised if antibiotic resistance is a local, hospital-centric phenomenon, with home antibiotic use posing a negligible threat of causing users to contract antibiotic-resistant bacteria. But I do not have data to back that up. It would be an interesting research project.
I’d be more concerned that some people would harm their gut bacteria or kidneys by overconsuming antibiotics. But I’m not confident about this. It’s just the most obvious direct consequence of expanded and unregulated access to antibiotics, and it’s where I’d start if I were to research possible negative consequences of parachuting into Chad with a backpack full of amoxycillin.
This isn’t my field, but there are tons of people who could give concrete and specific answers to all of these questions, and so it seems silly to continue speculation.
To be clear, I don’t think the claim that self-medicated antibiotic use causes more antibiotic resistance is obvious bullshit. Maybe the effect size is close to zero outside of hospitals, maybe it’s not, but the claim isn’t obvious bullshit either way.
The “obvious bullshit” part is the (implicit) claim that the cost outweighs the benefit, or is even remotely on the same order of magnitude, especially when we’re talking about an area where the alternative is usually “don’t use antibiotics at all”.
Yeah, it seems in the neighborhood of worrying that giving parachutes to people being pushed out of planes might lead to manufacture of low-quality parachutes to meet the demand, resulting in a net increase in deaths from plummeting to the ground.
I’ve certainly heard arguments along those lines before. They seem like obvious bullshit. Evidence: in most of the world, antibiotics are readily available over-the-counter, and yet I don’t hear about most of the world’s human-infecting bacteria becoming antibiotic resistant. Most of the world continues to use antibiotics, as a self-medication, and year after year they keep mostly working.
It seems to me like a very strong analogue to Oregon and New Jersey’s laws about pumping your own gas. Both of those states don’t allow it, which the rest of us know is completely stupid, but there’s still somehow a debate about it because lots of people make up reasons why it would be very dangerous to allow people to pump their own gas.
“yet I don’t hear about most of the world’s human-infecting bacteria becoming antibiotic resistant”
You’re not paying attention, or looking for the evidence—it’s not covered by the news, because of course they ignore gradual threats that pose minor inconveniences. But there is a lot of academic work on this. Even on short time scales, changing resistance is observable. The problem isn’t small. According to that last link, at this point, every year more people are killed due to antibiotic resistance than are killed by Malaria. And unlike Malaria, the trends are getting worse. I’m sure you can argue about the exact numbers, but unlike pumping gas, it’s a classic collective action problem were individual acts harm themselves too little to be noticed, and erodes a global commons that we can’t easily replenish or replace.
The “most” was doing key work in that sentence you quoted.
I totally buy that antiobiotic resistance is a large and growing problem. The part which seems like obvious bullshit is the claim that the cost outweighs the benefit, or is even remotely on the same order of magnitude, especially when we’re talking about an area like sub-Saharan Africa. Do any of those studies have a cost-benefit analysis?
(Also, side note: antibiotic resistance is totally in the news regularly. Here’s one from yesterday.)
Cost-benefit analysis is a very weak tool here, since costs are very hard to assess, long term, and uncertain, and in every individual case, it’s worth it because it’s a collective action problem and others are doing it wrong already.
There are estimates of the cost of antibiotic resistance, for example, almost $5b/year in the US alone. So from a collective action standpoint, if you assume that all agents are going to follow a policy, you at the very least only want to prescribe specific antibiotics when they are clinically useful—and even if you’re not running tests, etc. you need to know a really significant amount to know which antibiotics to use for which set of symptoms, and you should only prescribe them if there’s a pretty significant chance of full compliance. Hence the DOTS regime for TB—WHO guidelines require observing the patient taking each dose, not just prescribing it.
As a general rule of thumb it’s correct. Antibiotic resistance is a growing problem—it’s your basic red queen situation. We’re currently far ahead, but bacteria are catching up. This film is a pretty way of showing it happen (sort of) live. MRSA is causing more and more problems, especially as it tends to pop up in places where vulnerable people are (since that’s where it gets its resistance in the first place). It helps that there are different families of antibiotics, so if a strain is resistant to one of them, you can switch to a different kind. Though this paper suggests that each class works for ~50 years (I’m not a microbiologist and don’t know how true that is, though it fits with my priors). So it’s a valid issue, especially in the context of livestock, where it’s common to mix in antibiotics with the food (as each day ill is a day not growing).
That being said, this is mainly a problem in developed countries with ample access to antibiotics, which is a totally different case from the one you’re making. You could even say that it bolsters your idea, as why not send the weakened versions somewhere where they still have a chance of working?
I’m not sure that availability of antibiotics OTC in most of the world is good evidence that they don’t pose a problem. The main danger of gasoline is that it could catch on fire. It’s easy to see cause and effect if that were happening. If OTC antibiotic use was causing problems, that would require epidemiologists to figure out, and a political solution to fix. I’m not confident that most of the world is well-positioned to catch and fix any issues that may be arising from OTC antibiotic sales.
There’s reason to ask about the relative contributions to drug resistance of self-medication at home, hospital antibiotic use, and antibiotic use on factory farms. We hear about drug resistance mostly in hospitals, but I’d want to check whether this is reporting bias before believing that hospitals are the main drivers of antibiotic resistance.
I’d also question the degree to which antibiotic resistant bacteria can be “trafficked” from place to place. If antibiotic resistant bacteria develop inside a hospital, does that make the bacteria that people pick up outside of the hospital more likely to be drug resistant?
I wouldn’t be too surprised if antibiotic resistance is a local, hospital-centric phenomenon, with home antibiotic use posing a negligible threat of causing users to contract antibiotic-resistant bacteria. But I do not have data to back that up. It would be an interesting research project.
I’d be more concerned that some people would harm their gut bacteria or kidneys by overconsuming antibiotics. But I’m not confident about this. It’s just the most obvious direct consequence of expanded and unregulated access to antibiotics, and it’s where I’d start if I were to research possible negative consequences of parachuting into Chad with a backpack full of amoxycillin.
We can stop speculating about these questions—the answers exist and are relatively easy to check.
https://academic.oup.com/cid/article/27/Supplement_1/S12/459194 (Horizontal transfer is where the resistance is “trafficked” between different pathogens.)
https://academic.oup.com/cid/article-abstract/33/3/364/277722 (Geographic spread is very common, but you need better tracking to see exactly where and what the routes are.)
This isn’t my field, but there are tons of people who could give concrete and specific answers to all of these questions, and so it seems silly to continue speculation.
Thanks for finding these!
To be clear, I don’t think the claim that self-medicated antibiotic use causes more antibiotic resistance is obvious bullshit. Maybe the effect size is close to zero outside of hospitals, maybe it’s not, but the claim isn’t obvious bullshit either way.
The “obvious bullshit” part is the (implicit) claim that the cost outweighs the benefit, or is even remotely on the same order of magnitude, especially when we’re talking about an area where the alternative is usually “don’t use antibiotics at all”.
Yeah, it seems in the neighborhood of worrying that giving parachutes to people being pushed out of planes might lead to manufacture of low-quality parachutes to meet the demand, resulting in a net increase in deaths from plummeting to the ground.