Just because the expected values are equal doesn’t mean the expected utilities are equal. For example, if you are choosing between a 100% chance of $400 and an 80% chance of $500 but you need $500 to make the rent and not get evicted, it would be stupid not to try for the additional $100 since it has a disproportionately high value in that particular context. That is, while the expected value of the choices are identical, the expected utilities are not. Conversely, if you have zero money, the expected utility of a sure $400 far outweighs risking it all for an additional $100.
Basically you need an external context and a value system that assigns utilities to the possible outcomes to discriminate between the two. And if the expected utilities come back equal then you have no preference.
Does anyone feel strongly that one choice is better than the other if the average number of deaths is the same?
(1) 400 out of 500 people certainly die
(2) All 500 live with 80% probability, all die with 20% probability.
Just because the expected values are equal doesn’t mean the expected utilities are equal. For example, if you are choosing between a 100% chance of $400 and an 80% chance of $500 but you need $500 to make the rent and not get evicted, it would be stupid not to try for the additional $100 since it has a disproportionately high value in that particular context. That is, while the expected value of the choices are identical, the expected utilities are not. Conversely, if you have zero money, the expected utility of a sure $400 far outweighs risking it all for an additional $100.
Basically you need an external context and a value system that assigns utilities to the possible outcomes to discriminate between the two. And if the expected utilities come back equal then you have no preference.