How do you choose the interval? I have not been able to see any method other than choosing something that sounds good (choosing the minimum and maximum conceivable would lead to silly Pascal’s Wager—type things, and probably total paralysis.)
The discontinuity: Suppose you are asked to put a fair price f(N) on a bet that returns N if A occurs and 1 if it does not. The function f will have a sharp bend at 1, equivalent to a discontinuity in the derivative.
An alternative ambiguity aversion function, more complicated to define, would give a smooth bend.
How do you choose the interval? I have not been able to see any method other than choosing something that
sounds good
Heh. I’m the one being accused of huffing priors? :-)
Okay, granted, there are methods like maximum entropy for Bayesian priors that can be applied in some situations, and the Ellsberg urn is such a situation.
Yes, you are correct about the discontinuity in the derivative.
I don’t understand what you mean in the first paragraph. I’ve given an exact procedure for my decisions.
What kind of discontinuities to you have in mind?
How do you choose the interval? I have not been able to see any method other than choosing something that sounds good (choosing the minimum and maximum conceivable would lead to silly Pascal’s Wager—type things, and probably total paralysis.)
The discontinuity: Suppose you are asked to put a fair price f(N) on a bet that returns N if A occurs and 1 if it does not. The function f will have a sharp bend at 1, equivalent to a discontinuity in the derivative.
An alternative ambiguity aversion function, more complicated to define, would give a smooth bend.
Heh. I’m the one being accused of huffing priors? :-)
Okay, granted, there are methods like maximum entropy for Bayesian priors that can be applied in some situations, and the Ellsberg urn is such a situation.
Yes, you are correct about the discontinuity in the derivative.
Yes. Because you’re huffing priors. Twice as much, in fact—we have to make up one number, you have to make up two.