I need to brush up on evolutionary game theory, but I don’t see the correspondence between these two subjects yet. Can you take a standard puzzle involving indexical uncertainty, for example the Sleeping Beauty Problem, and show how to solve it using evolutionary game theory?
Hmm, I don’t see any problem in that scenario. It doesn’t even require game theory because the different branches don’t interact. Whatever monetary rewards you assign to correct/incorrect answers, the problem will be easy to solve by simple expected utility maximization.
Hmm, I don’t see any problem in that scenario. It doesn’t even require game theory because the different branches don’t interact. Whatever monetary rewards you assign to correct/incorrect answers, the problem will be easy to solve by simple expected utility maximization.
I need to brush up on evolutionary game theory, but I don’t see the correspondence between these two subjects yet. Can you take a standard puzzle involving indexical uncertainty, for example the Sleeping Beauty Problem, and show how to solve it using evolutionary game theory?
Hmm, I don’t see any problem in that scenario. It doesn’t even require game theory because the different branches don’t interact. Whatever monetary rewards you assign to correct/incorrect answers, the problem will be easy to solve by simple expected utility maximization.
Hmm, I don’t see any problem in that scenario. It doesn’t even require game theory because the different branches don’t interact. Whatever monetary rewards you assign to correct/incorrect answers, the problem will be easy to solve by simple expected utility maximization.