I found a paper about this exact sort of thing. Escardo and Olivia call that type signature a “selection functional”, and the type signature (A→B)→B is called a “quantification functional”, and there’s several interesting things you can do with them, like combining multiple selection functionals into one in a way that looks reminiscent of game theory. (ie, if ϵ has type signature (A→C)→A, and δ has type signature (B→C)→B, then ϵ⊗δ has type signature ((A×B)→C)→(A×B).
I found a paper about this exact sort of thing. Escardo and Olivia call that type signature a “selection functional”, and the type signature (A→B)→B is called a “quantification functional”, and there’s several interesting things you can do with them, like combining multiple selection functionals into one in a way that looks reminiscent of game theory. (ie, if ϵ has type signature (A→C)→A, and δ has type signature (B→C)→B, then ϵ⊗δ has type signature ((A×B)→C)→(A×B).