Not sure why you are quite so confident P!=NP. But that doesn’t really matter.
Consider bond strength. Lets say the energy taken to break a C-C bond varies by ±5% based on all sorts of complicated considerations involving the surrounding chemical structure. An AI designing a nanomachine can just apply 10% more energy than needed.
A quantum computer doesn’t just have a superposition of many states, its a superposition carefully chosen such that all the pieces destructively and constructively interfere in exactly the right way. Not that the AI needs exact predictions anyway.
Also, the AI can cheat. As well as fundamental physics, it has access to a huge dataset of experiments conducted by humans. It doesn’t need to deduce everything from QED, it can deduce things from random chemistry papers too.
Not sure why you are quite so confident P!=NP. But that doesn’t really matter.
Consider bond strength. Lets say the energy taken to break a C-C bond varies by ±5% based on all sorts of complicated considerations involving the surrounding chemical structure. An AI designing a nanomachine can just apply 10% more energy than needed.
A quantum computer doesn’t just have a superposition of many states, its a superposition carefully chosen such that all the pieces destructively and constructively interfere in exactly the right way. Not that the AI needs exact predictions anyway.
Also, the AI can cheat. As well as fundamental physics, it has access to a huge dataset of experiments conducted by humans. It doesn’t need to deduce everything from QED, it can deduce things from random chemistry papers too.