I’ve been running ELISA tests all week. In the first test, I did not detect stronger binding to any of the peptides than to the control in any of several samples from myself or my girlfriend. But the control itself was looking awfully suspicious, so I ran another couple tests. Sure enough, something in my samples is binding quite strongly to the control itself (i.e. the blocking agent), which is exactly what the control is supposed to not do. So I’m going to try out some other blocking agents, and hopefully get an actually-valid control group.
(More specifics on the test: I ran a control with blocking agent + sample, and another with blocking agent + blank sample, and the blocking agent + sample gave a strong positive signal while the blank sample gave nothing. That implies something in the sample was definitely binding to both the blocking agent and the secondary antibodies used in later steps, and that binding was much stronger than the secondary antibodies themselves binding to anything in the blocking agent + blank sample.)
In other news, the RadVac team released the next version of their recipe + whitepaper. Particularly notable:
… many people who have taken the nasal vaccine are testing negative for serum antibodies with commercial and lab ELISA tests, while many who inject the vaccine (subcutaneous or intramuscular) are testing positive (saliva testing appears to be providing evidence of mucosal response among a subset of researchers who have administered the vaccine intranasally).
Note that they’re talking specifically about serum (i.e. blood) antibodies here. So apparently injecting it does induce blood antibodies of the sort detectable by commercial tests (at least some of the time), but snorting it mostly just produces mucosal antibodies (also at least some of the time).
This is a significant update: most of my prior on the vaccine working was based on vague comments in the previous radvac spec about at least some people getting positive test results. But we didn’t know what kind of test results those were, so there was a lot of uncertainty about exactly what “working” looked like. In particular, we didn’t know whether antibodies were induced in blood or just mucus, and we didn’t know if they were induced consistently or only in some people (the latter of which is the “more dakka probably helps” world). Now we know that it’s mostly just mucus (at least for nasal administration). Still unsure about how consistently it works—the wording in the doc makes it sound like only some people saw a response, but I suspect the authors are just hedging because they know there’s both selection effects and a lot of noise in the data which comes back to them.
The latest version of the vaccine has been updated to give it a bit more kick—slightly higher dose, and the chitosan nanoparticle formula has been changed in a way which should make the peptides more visible to the immune system. Also, the list of peptides has been trimmed down a bit, so the latest version should actually be cheaper, though the preparation is slightly more complex.
Brief update on how it’s going with RadVac.
I’ve been running ELISA tests all week. In the first test, I did not detect stronger binding to any of the peptides than to the control in any of several samples from myself or my girlfriend. But the control itself was looking awfully suspicious, so I ran another couple tests. Sure enough, something in my samples is binding quite strongly to the control itself (i.e. the blocking agent), which is exactly what the control is supposed to not do. So I’m going to try out some other blocking agents, and hopefully get an actually-valid control group.
(More specifics on the test: I ran a control with blocking agent + sample, and another with blocking agent + blank sample, and the blocking agent + sample gave a strong positive signal while the blank sample gave nothing. That implies something in the sample was definitely binding to both the blocking agent and the secondary antibodies used in later steps, and that binding was much stronger than the secondary antibodies themselves binding to anything in the blocking agent + blank sample.)
In other news, the RadVac team released the next version of their recipe + whitepaper. Particularly notable:
Note that they’re talking specifically about serum (i.e. blood) antibodies here. So apparently injecting it does induce blood antibodies of the sort detectable by commercial tests (at least some of the time), but snorting it mostly just produces mucosal antibodies (also at least some of the time).
This is a significant update: most of my prior on the vaccine working was based on vague comments in the previous radvac spec about at least some people getting positive test results. But we didn’t know what kind of test results those were, so there was a lot of uncertainty about exactly what “working” looked like. In particular, we didn’t know whether antibodies were induced in blood or just mucus, and we didn’t know if they were induced consistently or only in some people (the latter of which is the “more dakka probably helps” world). Now we know that it’s mostly just mucus (at least for nasal administration). Still unsure about how consistently it works—the wording in the doc makes it sound like only some people saw a response, but I suspect the authors are just hedging because they know there’s both selection effects and a lot of noise in the data which comes back to them.
The latest version of the vaccine has been updated to give it a bit more kick—slightly higher dose, and the chitosan nanoparticle formula has been changed in a way which should make the peptides more visible to the immune system. Also, the list of peptides has been trimmed down a bit, so the latest version should actually be cheaper, though the preparation is slightly more complex.
I would expect that hedging also happens because making definitive clinical claims has more danger from the FDA then making hedged statements.