Here’s an interesting problem of embedded agency/True Names which I think would make a good practice problem: formulate what it means to “acquire” something (in the sense of “acquiring resources”), in an embedded/reductive sense. In other words, you should be able-in-principle to take some low-level world-model, and a pointer to some agenty subsystem in that world-model, and point to which things that subsystem “acquires” and when.
Some prototypical examples which an answer should be able to handle well:
Organisms (anything from bacteria to plant to animals) eating things, absorbing nutrients, etc.
...and how the brain figures this out and why it is motivated to do so. There are a lot of simple animals that apparently “try to control” resources or territory. How?
Drives to control resources occur everywhere. And your control of resources is closely related to your dominance in a dominance hierarchy. Which seems to be regulated in many animals by serotonin. See e.g. https://www.nature.com/articles/s41386-022-01378-2
Here’s an interesting problem of embedded agency/True Names which I think would make a good practice problem: formulate what it means to “acquire” something (in the sense of “acquiring resources”), in an embedded/reductive sense. In other words, you should be able-in-principle to take some low-level world-model, and a pointer to some agenty subsystem in that world-model, and point to which things that subsystem “acquires” and when.
Some prototypical examples which an answer should be able to handle well:
Organisms (anything from bacteria to plant to animals) eating things, absorbing nutrients, etc.
Humans making money or gaining property.
...and how the brain figures this out and why it is motivated to do so. There are a lot of simple animals that apparently “try to control” resources or territory. How?
Drives to control resources occur everywhere. And your control of resources is closely related to your dominance in a dominance hierarchy. Which seems to be regulated in many animals by serotonin. See e.g. https://www.nature.com/articles/s41386-022-01378-2