What’s the specific most-important-according-to-you progress that you (or other people) have made on your agenda? New theorems, definitions, conceptual insights, …
Any changes to the high-level plan (becoming less confused about agency, then ambitious value learning)? Any changes to how you want to become less confused (e.g. are you mostly thinking about abstractions, selection theorems, something new?)
What are the major parts of remaining deconfusion work (to the extent to which you have guesses)? E.g. is it mostly about understanding abstractions better, or mostly about how to apply an understanding of abstractions to other problems (say, what it means for a program to have a “subagent”), or something else? Does the most difficult part feel more conceptual (“what even is an agent?”) or will the key challenges be more practical concerns (“finding agents currently takes exponential time”)?
Specifically for understanding abstractions, what do you see as important open problems?
What’s the specific most-important-according-to-you progress that you (or other people) have made on your agenda? New theorems, definitions, conceptual insights, …
Any changes to the high-level plan (becoming less confused about agency, then ambitious value learning)? Any changes to how you want to become less confused (e.g. are you mostly thinking about abstractions, selection theorems, something new?)
What are the major parts of remaining deconfusion work (to the extent to which you have guesses)? E.g. is it mostly about understanding abstractions better, or mostly about how to apply an understanding of abstractions to other problems (say, what it means for a program to have a “subagent”), or something else? Does the most difficult part feel more conceptual (“what even is an agent?”) or will the key challenges be more practical concerns (“finding agents currently takes exponential time”)?
Specifically for understanding abstractions, what do you see as important open problems?