Turns out my laser thermometer is all over the map. Readings would change by 10°F if I went outside and came back in. My old-school thermometer is much more stable (and well-calibrated, based on dipping it in some ice water), but slow and caps out around 90°F (so I can’t use to measure e.g. exhaust temp). I plan to buy a bunch more old-school thermometers for the next try.
I thought opening the doors/windows in rooms other than the test room and setting up a fan would be enough to make the temperature in the hall outside the test room close to outdoor temp. This did not work; hall temp was around 72°F with outside around 80°F. I’ll need to change that part of the experiment design; most likely I’ll seal around the door and let air infiltrate exclusively from the window instead. (The AC is right next to the window, so this could screw with the results, but I don’t really have a better option.)
In two-hose mode, the AC hit its minimum temperature of 60°F, so I’ll need a hotter day. I’ll try again when we hit at least 85°F.
In case anyone’s wondering: in one-hose mode, the temperature in the room equilibrated around 66°F. Power consumption was near-constant throughout all conditions.
One additional Strange Observation: cool air was blowing out under the door of the test room in two-hose mode. This should not happen; my best guess is that, even though the AC has two separate intake vents, the two are not actually partitioned internally, so the fan for indoor-air was pulling in outdoor-air (causing air to blow out under the door to balance that extra inflow). Assuming that’s the cause, it should be fixable with some strategically-placed cardboard inside the unit.
Weather just barely hit 80°F today, so I tried the Air Conditioner Test.
Three problems came up:
Turns out my laser thermometer is all over the map. Readings would change by 10°F if I went outside and came back in. My old-school thermometer is much more stable (and well-calibrated, based on dipping it in some ice water), but slow and caps out around 90°F (so I can’t use to measure e.g. exhaust temp). I plan to buy a bunch more old-school thermometers for the next try.
I thought opening the doors/windows in rooms other than the test room and setting up a fan would be enough to make the temperature in the hall outside the test room close to outdoor temp. This did not work; hall temp was around 72°F with outside around 80°F. I’ll need to change that part of the experiment design; most likely I’ll seal around the door and let air infiltrate exclusively from the window instead. (The AC is right next to the window, so this could screw with the results, but I don’t really have a better option.)
In two-hose mode, the AC hit its minimum temperature of 60°F, so I’ll need a hotter day. I’ll try again when we hit at least 85°F.
In case anyone’s wondering: in one-hose mode, the temperature in the room equilibrated around 66°F. Power consumption was near-constant throughout all conditions.
One additional Strange Observation: cool air was blowing out under the door of the test room in two-hose mode. This should not happen; my best guess is that, even though the AC has two separate intake vents, the two are not actually partitioned internally, so the fan for indoor-air was pulling in outdoor-air (causing air to blow out under the door to balance that extra inflow). Assuming that’s the cause, it should be fixable with some strategically-placed cardboard inside the unit.