It would be extraordinary if the algorithm that is optimal given infinite computational resource is also optimal given limited resource.
I suspect that by framing this as a battle between Bayesian inference and actual evolved human algorithms, we are missing the third alternative: algorithm X, which is the optimal algorithm for decision-making given the resources and options that we have in the society that we find ourselves in.
Well, it may be that this ideal algorithm you’re looking for is NP-hard, and thus cannot ever be executed in a short amount of time over a non-trivial problem space. Have you considered the possibility that this bounded rationality model is algorithm X?
It would be extraordinary if the algorithm that is optimal given infinite computational resource is also optimal given limited resource.
I suspect that by framing this as a battle between Bayesian inference and actual evolved human algorithms, we are missing the third alternative: algorithm X, which is the optimal algorithm for decision-making given the resources and options that we have in the society that we find ourselves in.
Well, it may be that this ideal algorithm you’re looking for is NP-hard, and thus cannot ever be executed in a short amount of time over a non-trivial problem space. Have you considered the possibility that this bounded rationality model is algorithm X?
Computing time is a resource, so “optimal algorithm for decision-making given the resources… we have” rules out impractical algorithms.