There are architectural problems with LLMs that I think prevent the future you are describing; they can only output so many tokens, and actual binaries are often up to thousands of times the token size of the actual programming languages, especially when compiled from high level languages. The compilation process is thus a useful compression step, and I don’t expect designed-for-LLM programming languages because the terabyte datasets currently necessary to train LLMs to use them won’t be available. In addition, at least for the next few years, it will be important for humans to be able to inspect and reason directly about the software the LLM has made.
There are architectural problems with LLMs that I think prevent the future you are describing; they can only output so many tokens, and actual binaries are often up to thousands of times the token size of the actual programming languages, especially when compiled from high level languages. The compilation process is thus a useful compression step, and I don’t expect designed-for-LLM programming languages because the terabyte datasets currently necessary to train LLMs to use them won’t be available. In addition, at least for the next few years, it will be important for humans to be able to inspect and reason directly about the software the LLM has made.
But it’s possible these problems get solved soon.