Drowsiness which can affect work performance, is often elicited through self-reporting. This paper demonstrates the potential to use EEG to objectively quantify changes to drowsiness due to poor indoor air quality. Continuous EEG data was recorded from 23 treatment group participants subject to artificially raised indoor CO2 concentrations (average 2,700 ± 300 ppm) for approximately 10 minutes and 13 control group participants subject to the same protocol without additional CO2 (average 830 ± 70 ppm). EEG data were analysed for markers of drowsiness according neurophysiological methods at three stages of the experiment, Baseline, High CO2 and Post-Ventilation. Treatment group participants’ EEG data yielded a closer approximation to drowsiness than that of control group participants during the High CO2 condition, despite no significant group differences in self-reported sleepiness. Future work is required to determine the persistence of these changes to EEG over longer exposures and to better isolate the specific effect of CO2 on drowsiness compared to other environmental or physiological factors.
A new one: “Using EEG to characterise drowsiness during short duration exposure to elevated indoor Carbon Dioxide concentrations”, Snow et al 2018:
Some recent kerfluffles over CO2 (prompted by people rediscovering Allen et al 2016 on Twitter etc) lead me to one I missed: “Breathing Carbon Dioxide (4% for 1-Hour) Slows Response Selection, Not Stimulus Encoding”, Vercruyssen 2014. 4% is a ton but the results remain subtle, at best.