Regarding the quasar “in” NGC7319 - read here for a discussion on the stellar object.
Needless to say, the reason it is ignored isn’t because it contradicts mainstream cosmological theory, it’s because it coincides with it pretty much perfectly given the state of our observational technology.
When judging articles like this, a simple, lazy estimate of probabilities is very helpful. For example, which do you think is more likely, 100 years of highly successful physics and cosmology is flat wrong (which is required for the quasar to be inside NGC7319, everything from what quasars are made of to the physics behind how they emit EM radiation must be wrong), or that a handful of researchers jumped to conclusions in their excitement? My vote goes to the latter until some pretty extraordinary evidence is found confirming their claims. Modern telescopes aren’t precise enough to rule their claims out completely, but the quasar doesn’t deviate from known cosmological effects which fit the current theory of the cosmos.
I’d wager a similar story for comets, I didn’t look that up though as they don’t interest me nearly as much as quasars do.
There is also a fairly significant amount of rather difficult to refute evidence for the existence of dark energy and dark matter. Matter that both has mass (and therefore gravity) and also does not interact with ordinary matter certainly exists—the best example is the neutrino. There just isn’t a known mechanism to produce enough of this type of matter to account for the amount observed in the universe. Hence the “dark” in the name (which, incidentally, many physicists don’t approve of precisely because it sounds too much like “magic”).
The existence of dark energy is even more definitive. Simply put, the universe is expanding at an accelerated pace. This is undeniable. The only way for acceleration to occur is for energy to be expended (unless you are willing to throw away thermodynamics’ otherwise perfect record). There are a couple of potential sources for dark energy (like vacuum energy) but nothing close to definitive.
Again, which is more likely? That hundreds of years of science is completely wrong (with nothing even sensible to take its place, I might add) or a hitherto unknown aspect of the universe has been discovered? Honestly, given the amount of evidence supporting the current models used in physics “something new” is by far the simplest and most likely explanation.
Dark matter and dark energy aren’t stop signs to cosmologists and physicists, they are basically shorthand for “we don’t know yet what this stuff is or how it got here, we are still trying to figure that out, but whatever it is should look something like this”.
And if you think scientists have been ignoring these problems, especially dark matter, then you haven’t been paying enough attention to theoretical and experimental physics over the past decade, particularly the past 5 years or so. One of the driving forces behind the LHC (certainly not the only, of course) was dark matter.
Regarding the quasar “in” NGC7319 - read here for a discussion on the stellar object.
Needless to say, the reason it is ignored isn’t because it contradicts mainstream cosmological theory, it’s because it coincides with it pretty much perfectly given the state of our observational technology.
When judging articles like this, a simple, lazy estimate of probabilities is very helpful. For example, which do you think is more likely, 100 years of highly successful physics and cosmology is flat wrong (which is required for the quasar to be inside NGC7319, everything from what quasars are made of to the physics behind how they emit EM radiation must be wrong), or that a handful of researchers jumped to conclusions in their excitement? My vote goes to the latter until some pretty extraordinary evidence is found confirming their claims. Modern telescopes aren’t precise enough to rule their claims out completely, but the quasar doesn’t deviate from known cosmological effects which fit the current theory of the cosmos.
I’d wager a similar story for comets, I didn’t look that up though as they don’t interest me nearly as much as quasars do.
There is also a fairly significant amount of rather difficult to refute evidence for the existence of dark energy and dark matter. Matter that both has mass (and therefore gravity) and also does not interact with ordinary matter certainly exists—the best example is the neutrino. There just isn’t a known mechanism to produce enough of this type of matter to account for the amount observed in the universe. Hence the “dark” in the name (which, incidentally, many physicists don’t approve of precisely because it sounds too much like “magic”).
The existence of dark energy is even more definitive. Simply put, the universe is expanding at an accelerated pace. This is undeniable. The only way for acceleration to occur is for energy to be expended (unless you are willing to throw away thermodynamics’ otherwise perfect record). There are a couple of potential sources for dark energy (like vacuum energy) but nothing close to definitive.
Again, which is more likely? That hundreds of years of science is completely wrong (with nothing even sensible to take its place, I might add) or a hitherto unknown aspect of the universe has been discovered? Honestly, given the amount of evidence supporting the current models used in physics “something new” is by far the simplest and most likely explanation.
Dark matter and dark energy aren’t stop signs to cosmologists and physicists, they are basically shorthand for “we don’t know yet what this stuff is or how it got here, we are still trying to figure that out, but whatever it is should look something like this”.
And if you think scientists have been ignoring these problems, especially dark matter, then you haven’t been paying enough attention to theoretical and experimental physics over the past decade, particularly the past 5 years or so. One of the driving forces behind the LHC (certainly not the only, of course) was dark matter.