If anything I’d say the opposite is true—inefficiency for key biochemical processes that are under high selection pressure is surprising and more notable. For example I encountered some papers about the apparent inefficiency of a key photosynthesis enzyme the other day.
I don’t know quite what you are referring to here, but i’m guessing you are confusing the reliable vs unreliable limits which I discussed in my brain efficiency post and linked somewhere else in this thread.
That paper Gunnar found analyzes replication efficiency in more depth:
More significantly, these calculations also establish that the E. coli bacterium produces an amount of heat less than six times (220npep/42npep) as large as the absolute physical lower bound dictated by its growth rate, internal entropy production, and durability. In light of the fact that the bacterium is a complex sensor of its environment that can very effectively adapt itself to growth in a broad range of different environments, we should not be surprised that it is not perfectly optimized for any given one of them. Rather, it is remarkable that in a single environment, the organism can convert chemical energy into a new copy of itself so efficiently that if it were to produce even a quarter as much heat it would be pushing the limits of what is thermodynamically possible! This is especially the case since we deliberately underestimated the reverse reaction rate with our calculation of phyd, which does not account for the unlikelihood of spontaneously converting carbon dioxide back into oxygen. Thus, a more accurate estimate of the lower bound on β⟨Q⟩ in future may reveal E. coli to be an even more exceptionally well-adapted self-replicator than it currently seems.
I haven’t read the paper in detail enough to know whether that 6x accounts for reliability/errors or not.
If anything I’d say the opposite is true—inefficiency for key biochemical processes that are under high selection pressure is surprising and more notable. For example I encountered some papers about the apparent inefficiency of a key photosynthesis enzyme the other day.
I don’t know quite what you are referring to here, but i’m guessing you are confusing the reliable vs unreliable limits which I discussed in my brain efficiency post and linked somewhere else in this thread.
That paper Gunnar found analyzes replication efficiency in more depth:
I haven’t read the paper in detail enough to know whether that 6x accounts for reliability/errors or not.
https://aip.scitation.org/doi/10.1063/1.4818538