An analysis of what kinds of differential progress we can expect from stronger ML. Actually, I don’t feel like writing this post, but I just don’t understand why Dai and Christiano, respectively, are particularly concerned about differential progress on the polynomial hierarchy and what’s easy-to-measure vs. hard-to-measure. My gut reaction is “maybe, but why privilege that axis of differential progress of all things”, and I can’t resolve that in my mind without doing a comprehensive analysis of potential “differential progresses” that ML could precipitate. Which, argh, sounds like an exhausting task, but someone should do it?
Re: easy-to-measure vs. hard-to-measure axis: That seems like the most obvious axis on which AI is likely to be different from humans, and it clearly does lead to bad outcomes?
(6)
An analysis of what kinds of differential progress we can expect from stronger ML. Actually, I don’t feel like writing this post, but I just don’t understand why Dai and Christiano, respectively, are particularly concerned about differential progress on the polynomial hierarchy and what’s easy-to-measure vs. hard-to-measure. My gut reaction is “maybe, but why privilege that axis of differential progress of all things”, and I can’t resolve that in my mind without doing a comprehensive analysis of potential “differential progresses” that ML could precipitate. Which, argh, sounds like an exhausting task, but someone should do it?
Re: easy-to-measure vs. hard-to-measure axis: That seems like the most obvious axis on which AI is likely to be different from humans, and it clearly does lead to bad outcomes?