In some papers people write density operators using an enhanced “double ket” Dirac notation, where eg. density operators are written to look like |x>>, with two “>”’s. They do this exactly because the differential equations look more elegant.
I think in this notation measurements look like <<m|, but am not sure about that. The QuTiP software (which is very common in quantum modelling) uses something like this under-the-hood, where operators (eg density operators) are stored internally using 1d vectors, and the super-operators (maps from operators to operators) are stored as matrices.
So structuring the notation in other ways does happen, in ways that look quite reminiscent of your tensors (maybe the same).
In some papers people write density operators using an enhanced “double ket” Dirac notation, where eg. density operators are written to look like |x>>, with two “>”’s. They do this exactly because the differential equations look more elegant.
I think in this notation measurements look like <<m|, but am not sure about that. The QuTiP software (which is very common in quantum modelling) uses something like this under-the-hood, where operators (eg density operators) are stored internally using 1d vectors, and the super-operators (maps from operators to operators) are stored as matrices.
So structuring the notation in other ways does happen, in ways that look quite reminiscent of your tensors (maybe the same).