It seems as though just about all knowledge is inherently coherentist. There is no position outside of myself and my associated framework of knowledge-claiming processes from which I can claim knowledge. How I claim to know what I claim to know will always depend on the way in which I came to claim to know what I know (sorry, wordy). That certainly needn’t be circular, but it does seem to make a lie out of point (2) of Feldman’s modest foundationalism.
Going back to Descartes, any non-solipsistic knowledge claims are only considered simple JTB assuming standard conditions for observation, i.e. even assuming a realist position, all knowledge is fundamentally inferential and inductive, even formal logic and mathematic. The odds that both formal logic and mathematics are true and not some trick played on the mechanics of the universe seem good, but of course, even that is an inductive inference. All systems which are deserving of the name are coherent and self-consistent, and some are even consistent with other systems, but I am at least unaware, of a system which is consistent and coherent with all other systems, i.e., contains all other systems....Oh boy, getting into the universal set problem. Sorry ’bout that.
It seems as though just about all knowledge is inherently coherentist. There is no position outside of myself and my associated framework of knowledge-claiming processes from which I can claim knowledge.
I don’t see how the second sentence supports coherentism. For that matter, I also don;t see how it goes against foundationalism, Foundationalists typically believe that sensory evidence, not an “external view”, is their foundation.
How I claim to know what I claim to know will always depend on the way in which I came to claim to know what I know (sorry, wordy). That certainly needn’t be circular, but it does seem to make a lie out of point (2) of Feldman’s modest foundationalism.
Again, I don;t see the connection. The foundationalist claim is that propositions that need justification can get it from propositions that don’t.need justification. It isn’t a claim that there are way s of knowing things that are fundamentally unconditioned by being known in particular ways. “Snow is white” has to be expressed in some language or other, but that doesn’t render it doubtful.
Going back to Descartes, any non-solipsistic knowledge claims are only considered simple JTB assuming standard conditions for observation, i.e. even assuming a realist position, all knowledge is fundamentally inferential and inductive, even formal logic and mathematic.
How do you know that “I am currently under standard observation conditions” isn’t foundationally justified?
Going back to Descartes, any non-solipsistic knowledge claims are only considered simple JTB assuming standard conditions for observation, i.e. even assuming a realist position, all knowledge is fundamentally inferential and inductive, even formal logic and mathematic. The odds that both formal logic and mathematics are true and not some trick played on the mechanics of the universe seem good, but of course, even that is an inductive inference. All systems which are deserving of the name are coherent and self-consistent, and some are even consistent with other systems, but I am at least unaware, of a system which is consistent and coherent with all other systems, i.e., contains all other systems....Oh boy, getting into the universal set problem. Sorry ’bout that.
It seems as though just about all knowledge is inherently coherentist. There is no position outside of myself and my associated framework of knowledge-claiming processes from which I can claim knowledge. How I claim to know what I claim to know will always depend on the way in which I came to claim to know what I know (sorry, wordy). That certainly needn’t be circular, but it does seem to make a lie out of point (2) of Feldman’s modest foundationalism.
Going back to Descartes, any non-solipsistic knowledge claims are only considered simple JTB assuming standard conditions for observation, i.e. even assuming a realist position, all knowledge is fundamentally inferential and inductive, even formal logic and mathematic. The odds that both formal logic and mathematics are true and not some trick played on the mechanics of the universe seem good, but of course, even that is an inductive inference. All systems which are deserving of the name are coherent and self-consistent, and some are even consistent with other systems, but I am at least unaware, of a system which is consistent and coherent with all other systems, i.e., contains all other systems....Oh boy, getting into the universal set problem. Sorry ’bout that.
I don’t see how the second sentence supports coherentism. For that matter, I also don;t see how it goes against foundationalism, Foundationalists typically believe that sensory evidence, not an “external view”, is their foundation.
Again, I don;t see the connection. The foundationalist claim is that propositions that need justification can get it from propositions that don’t.need justification. It isn’t a claim that there are way s of knowing things that are fundamentally unconditioned by being known in particular ways. “Snow is white” has to be expressed in some language or other, but that doesn’t render it doubtful.
How do you know that “I am currently under standard observation conditions” isn’t foundationally justified?
Going back to Descartes, any non-solipsistic knowledge claims are only considered simple JTB assuming standard conditions for observation, i.e. even assuming a realist position, all knowledge is fundamentally inferential and inductive, even formal logic and mathematic. The odds that both formal logic and mathematics are true and not some trick played on the mechanics of the universe seem good, but of course, even that is an inductive inference. All systems which are deserving of the name are coherent and self-consistent, and some are even consistent with other systems, but I am at least unaware, of a system which is consistent and coherent with all other systems, i.e., contains all other systems....Oh boy, getting into the universal set problem. Sorry ’bout that.