In your problem description you said you receive the letter:
Thus, the claim made by the letter is true. Assume the agent receives the letter. Should she pay up?
Given that you did receive the letter, that eliminates 2 of the 4 possible worlds, and we are left with only (infested, dont_pay) and (uninfested, pay). Then the choice is obvious. EDT is correct here.
Obviously if you don’t receive the letter you have more options but then its not much of an interesting problem.
you can’t possibly influence whether or not you have a termite infestation.
This intuition is actually false for perfect predictors. A perfect predictor could simulate your mind (along with everything else) perfectly, which is somewhat equivalent to time travel. Its not actual time travel of course; in these ‘perfect prediction’ scenarios your future (perfectly predicted) decisions have already effected your past.
“In your problem description you said you receive the letter”
True, but the problem description also specifies subjunctive dependence between the agent and the predictor. When the predictor made her prediction the letter isn’t yet sent. So the agent’s decision influences whether or not she gets the letter.
“This intuition is actually false for perfect predictors.”
I agree (and have written extensively on the subject). But it’s the prediction the agent influences, not the presence of the termite infestation.
The payoff and optimal move naturally depends on the exact time of measurement. Before receiving any letter you can save $1000 by precomitting to not paying: but that is a move both FDT and EDT will make. But after receiving the letter (which you assumed) the optimal move is to pay the $1000 to save $1M. FDT from my understanding fails here as it retroactively precommits to not paying and thus loses $1M. So this is a good example of where EDT > FDT.
The only example i’ve seen so far where the retroactive precommitment of FDT actually could make sense is the specific variant 5 from here where we measure utility before the agent knows the rules or has observed anything. And even in that scenario FDT only has a net advantage if it is optimal to make the universal precommitmment everywhere. EDT can decide to do that: EDT->FDT is allowed, but FDT can never switch back. So in that sense EDT is ‘dominant’, or the question reduces to: is the universal precommitment of FDT a win on net across the multiverse? Which is far from clear.
In your problem description you said you receive the letter:
Given that you did receive the letter, that eliminates 2 of the 4 possible worlds, and we are left with only (infested, dont_pay) and (uninfested, pay). Then the choice is obvious. EDT is correct here.
Obviously if you don’t receive the letter you have more options but then its not much of an interesting problem.
This intuition is actually false for perfect predictors. A perfect predictor could simulate your mind (along with everything else) perfectly, which is somewhat equivalent to time travel. Its not actual time travel of course; in these ‘perfect prediction’ scenarios your future (perfectly predicted) decisions have already effected your past.
“In your problem description you said you receive the letter”
True, but the problem description also specifies subjunctive dependence between the agent and the predictor. When the predictor made her prediction the letter isn’t yet sent. So the agent’s decision influences whether or not she gets the letter.
“This intuition is actually false for perfect predictors.”
I agree (and have written extensively on the subject). But it’s the prediction the agent influences, not the presence of the termite infestation.
The payoff and optimal move naturally depends on the exact time of measurement. Before receiving any letter you can save $1000 by precomitting to not paying: but that is a move both FDT and EDT will make. But after receiving the letter (which you assumed) the optimal move is to pay the $1000 to save $1M. FDT from my understanding fails here as it retroactively precommits to not paying and thus loses $1M. So this is a good example of where EDT > FDT.
The only example i’ve seen so far where the retroactive precommitment of FDT actually could make sense is the specific variant 5 from here where we measure utility before the agent knows the rules or has observed anything. And even in that scenario FDT only has a net advantage if it is optimal to make the universal precommitmment everywhere. EDT can decide to do that: EDT->FDT is allowed, but FDT can never switch back. So in that sense EDT is ‘dominant’, or the question reduces to: is the universal precommitment of FDT a win on net across the multiverse? Which is far from clear.