As we lack the means to represent the different options we probably do not have a law that paradoxes will be avoided (partly because we do not have a technical analogoue for “paradox”)
In the extended ontology what corresponds to old time would be an open question. That is if you have a multivalued state in the past and some of the values of that are effects of (partial) values in the future it’s still pretty much “time travel”.
I also thought that qunatum mechanics is pretty chill with superposition. Could not one extend the model by having a different imaginary unit and then have a superposition of amplitudes? And I thought getting a sure eigenvalue is a special case. Isn’t the non-eigenvalue case already covering a simultanoues attribution of multiple real values? I case there are two cases 1) we do not represent that currently in our models or 2) Our representations used in our models can not represent that.
As we lack the means to represent the different options we probably do not have a law that paradoxes will be avoided (partly because we do not have a technical analogoue for “paradox”)
In the extended ontology what corresponds to old time would be an open question. That is if you have a multivalued state in the past and some of the values of that are effects of (partial) values in the future it’s still pretty much “time travel”.
I also thought that qunatum mechanics is pretty chill with superposition. Could not one extend the model by having a different imaginary unit and then have a superposition of amplitudes? And I thought getting a sure eigenvalue is a special case. Isn’t the non-eigenvalue case already covering a simultanoues attribution of multiple real values? I case there are two cases 1) we do not represent that currently in our models or 2) Our representations used in our models can not represent that.