So, there’s direct, deterministic causation, like people usually talk about. Then there’s stochasitic causation, where stuff has a probabilistic influence on other stuff. Then there’s pure spontenaity, things simply appearing out of no-where for no reason, but according to easily modeled rules and probabilities. Even that last is at least theorised to exist in our universe—in particular as long as the total energy and time multiply to less than planck’s constant (or something like that). At no point in this chain have we stopped calling our universe causal and deterministic, no matter how it strains the common use meaning of those terms. I don’t see why time turners need to make us stop either.
To take your Game of Life example, at each stage, the next stage can be chosen by calculating all self-consistent futures and picking one at random. The game is not a-causal, it’s just more complicated. The next state is still a function of the current (and past) states, it’s just a more complicated one. A time-turner universe can also still have the property that it has a current state, and it chooses a future state taking the current state as (causal) input. Or indeed the continuous analogue. It just means that choosing the future state involves looking ahead a number of steps, and choosing (randomly or otherwise) among self-consistent states. The trick for recovering causation is that instead of saying Harry Potter appearing in the room was caused by Harry Potter deciding to turn the time turner in the future, you say Harry Potter appearing in the room was caused by the universe’s generate-a-consistent-story algorithm. And if you do something that makes self-consistent-stories with Harry Potter appearing than otherwise then you are having a stochastic causal influence on this appearance. Causality is in-tact, it’s just that the rules of the universe are more complicated.
Which brings me to the meditation. Dealing with the idea of a universe with time turners is no different to a universe with psychics. In either case, the universe itself would need to be substantially more complicated in order for these things to work. Both involve a much larger increase in complexity required than they intuitively seem to, because they’re a small modification to the universe “as we see it”, but making that change requires a fundamental reworking of the underlying physics to something subtantially more complicated. Thus until substantially strong evidence of their existance comes to light, they languish in the high-Kolmogorov-complexity land of theories which have no measurable impact on an agent’s choices, non-zero probability or otherwise.
Who’s to say there aren’t time-turners in the universe by the way? Positrons behave exactly like electrons travelling backwards in time. A positron-electron pair spontaneously appearing and soon annhiliating could also be modelled as a time-loop with no fundamental cause. You can make a time-turner situation as well out of them, going forward then backwards then forwards again. Of course, information isn’t travelling backwards in time here, but what exactly does that mean in the first place anyway?
So, there’s direct, deterministic causation, like people usually talk about. Then there’s stochasitic causation, where stuff has a probabilistic influence on other stuff. Then there’s pure spontenaity, things simply appearing out of no-where for no reason, but according to easily modeled rules and probabilities. Even that last is at least theorised to exist in our universe—in particular as long as the total energy and time multiply to less than planck’s constant (or something like that). At no point in this chain have we stopped calling our universe causal and deterministic, no matter how it strains the common use meaning of those terms. I don’t see why time turners need to make us stop either.
To take your Game of Life example, at each stage, the next stage can be chosen by calculating all self-consistent futures and picking one at random. The game is not a-causal, it’s just more complicated. The next state is still a function of the current (and past) states, it’s just a more complicated one. A time-turner universe can also still have the property that it has a current state, and it chooses a future state taking the current state as (causal) input. Or indeed the continuous analogue. It just means that choosing the future state involves looking ahead a number of steps, and choosing (randomly or otherwise) among self-consistent states. The trick for recovering causation is that instead of saying Harry Potter appearing in the room was caused by Harry Potter deciding to turn the time turner in the future, you say Harry Potter appearing in the room was caused by the universe’s generate-a-consistent-story algorithm. And if you do something that makes self-consistent-stories with Harry Potter appearing than otherwise then you are having a stochastic causal influence on this appearance. Causality is in-tact, it’s just that the rules of the universe are more complicated.
Which brings me to the meditation. Dealing with the idea of a universe with time turners is no different to a universe with psychics. In either case, the universe itself would need to be substantially more complicated in order for these things to work. Both involve a much larger increase in complexity required than they intuitively seem to, because they’re a small modification to the universe “as we see it”, but making that change requires a fundamental reworking of the underlying physics to something subtantially more complicated. Thus until substantially strong evidence of their existance comes to light, they languish in the high-Kolmogorov-complexity land of theories which have no measurable impact on an agent’s choices, non-zero probability or otherwise.
Who’s to say there aren’t time-turners in the universe by the way? Positrons behave exactly like electrons travelling backwards in time. A positron-electron pair spontaneously appearing and soon annhiliating could also be modelled as a time-loop with no fundamental cause. You can make a time-turner situation as well out of them, going forward then backwards then forwards again. Of course, information isn’t travelling backwards in time here, but what exactly does that mean in the first place anyway?