Great points, thanks for the comment! :) I agree that there are potentially some very low-hanging fruits. I could even imagine that some of these methods work better in artificial networks than in biological networks (less noise, more controlled environment).
But I believe one of the major bottlenecks might be that the weights and activations of an artificial neural network are just so difficult to access? Putting the weights and activations of a large model like GPT-3 under the microscope requires impressive hardware (running forward passes, storing the activations, transforming everything into a useful form, …) and then there are so many parameters to look at.
Giving researchers structured accessto the model via a research API could solve a lot of those difficulties and appears like something that totally should exist (although there is of course the danger of accelerating progress on the capabilities side also).
Great points, thanks for the comment! :) I agree that there are potentially some very low-hanging fruits. I could even imagine that some of these methods work better in artificial networks than in biological networks (less noise, more controlled environment).
But I believe one of the major bottlenecks might be that the weights and activations of an artificial neural network are just so difficult to access? Putting the weights and activations of a large model like GPT-3 under the microscope requires impressive hardware (running forward passes, storing the activations, transforming everything into a useful form, …) and then there are so many parameters to look at.
Giving researchers structured access to the model via a research API could solve a lot of those difficulties and appears like something that totally should exist (although there is of course the danger of accelerating progress on the capabilities side also).