you can tractably identify situations where CDT loses.
“Tractably” is a word that I find a bit unexpected in this context. What do you mean by it?
“Situations where CDT loses.” Are we talking about real-world-ish situations here? Situations in which causality applies? Situations in which the agents are free rather than being agents whose decisions have already been made for them by a programmer at some time in the past? What kind of situations do you have in mind?
And what do you mean by “loses”? Loses to who or what? Loses to agents that can foresee their opponent’s plays? Agents that have access to information channels not available to the CDT agent? Just what information channels are allowed? Why those, and not others?
ETA: And that “Surely it wouldn’t be CDT … because you can identify …” construction simply begs for completion with “Surely it would be … because you can’t identify …”. Do you have a candidate? Do you have a proof of “you can’t identify situations where it loses”. If not, what grounds do you have for criticizing?
CDT still loses to TDT in Newcomb’s problem if Omega has can predict your actions with better than 50.05% chances. You can’t get out of this by claiming that Omega has access to unrealistic information channels, because these chances seem fairly realistic to me.
Situations in which the agents are free rather than being agents whose decisions have already been made for them by a programmer at some time in the past?
Free from what? Causality? This sounds distressingly like you are relying on some notion of “free will”.
I understand that every normative decision theory adopts the assumption (convenient fiction if you prefer) that the agent being advised is acting of “his own free will”. Otherwise, why bother advising?
Being a compatibilist, as I understand Holy Scripture (i.e. The Sequences) instructs me to be, I see no incompatibility between this “fiction” of free will and the similar fiction of determinism. They model reality at different levels.
For certain purposes, it is convenient to model myself and other “free agents” as totally free in our decisions, but not completely free in carrying out those decisions. For example, my free will ego may decide to quit smoking, but my determined id has some probability of overruling that decision.
Why the distinction between agents which are free and agents which have had their decisions made for them by a programmer, then? Are you talking about cases in which specific circumstances have hard-coded behavioral responses? Every decision every agent makes is ultimately made for it by the agent’s programmer; I suppose I’m wondering where you draw the line.
As a side note, I feel very uncomfortable seeing the sequences referred to as inviolable scripture, even in jest. In my head, it just screams “oh my god how could anyone ever be doing it this wrong arghhhhhh.”
I’m still trying to figure out what I think of that reaction, and do not mention it as a criticism. I think.
Why the distinction between agents which are free and agents which have had their decisions made for them by a programmer, then? Are you talking about cases in which specific circumstances have hard-coded behavioral responses? Every decision every agent makes is ultimately made for it by the agent’s programmer; I suppose I’m wondering where you draw the line.
I make the distinction because the distinction is important. The programmer makes decisions at one point in time, with his own goals and/or utility functions, and his own knowledge of the world. The agent makes decisions at a different point in time, based on different values and different knowledge of the world. A decision theory which advises the programmer is not superior to a decision theory which advises the agent. Those two decision theories are playing different games.
“Totally free” sounds like too free. You’re not free to actually decide at time T to “decide X at time T+1″ and then actually decide Y at time T+1, since that is against the laws of physics.
It’s my understanding that what goes through your head when you actually decide X at time T+1 is (approximately) what we call TDT. Or you can stick to CDT and not be able to make decisions for your future self.
I upvoted this because it seems to contain a grain of truth, but I’m nervous that someone before me had downvoted it. I don’t know whether that was because it actually is just completely wrong about what TDT is all about, or because you went a bit over the top with “against the laws of physics”.
Situations where CDT loses are precisely those situations where credible precommitment helps you, and inability to credibly precommit hurts you. There’s no shortage of those in game theory.
Ok, those are indeed a reasonable class of decisions to consider. Now, you say that CDT loses. Ok, loses to what? And presumably you don’t mean loses to opponents of your preferred decision theory. You mean loses in the sense of doing less well in the same situation. Now, presumably that means that both CDT and your candidate are playing against the same game opponent, right?
I think you see where I am going here, though I can spell it out if you wish. In claiming the superiority of the other decision theory you are changing the game in an unfair way by opening a communication channel that didn’t exist in the original game statement and which CDT has no way to make use of.
Well, yeah, kind of, that’s one way to look at it. Reformulate the question like this: what would CDT do if that communication channel were available? What general precommitment for future situations would CDT adopt and publish? That’s the question TDT people are trying to solve.
what would CDT do if that communication channel were available?
The simplest answer that moves this conversation forward would be “It would pretend to be a TDT agent that keeps its commitments, whenever that act of deception is beneficial to it. It would keep accurate statistics on how often agents claiming to be TDT agents actually are TDT agents, and adjust its priors accordingly.”
Now it is your turn to explain why this strategy violates the rules, whereas your invention of a deception-free channel did not.
“Tractably” is a word that I find a bit unexpected in this context. What do you mean by it?
“Situations where CDT loses.” Are we talking about real-world-ish situations here? Situations in which causality applies? Situations in which the agents are free rather than being agents whose decisions have already been made for them by a programmer at some time in the past? What kind of situations do you have in mind?
And what do you mean by “loses”? Loses to who or what? Loses to agents that can foresee their opponent’s plays? Agents that have access to information channels not available to the CDT agent? Just what information channels are allowed? Why those, and not others?
ETA: And that “Surely it wouldn’t be CDT … because you can identify …” construction simply begs for completion with “Surely it would be … because you can’t identify …”. Do you have a candidate? Do you have a proof of “you can’t identify situations where it loses”. If not, what grounds do you have for criticizing?
CDT still loses to TDT in Newcomb’s problem if Omega has can predict your actions with better than 50.05% chances. You can’t get out of this by claiming that Omega has access to unrealistic information channels, because these chances seem fairly realistic to me.
Free from what? Causality? This sounds distressingly like you are relying on some notion of “free will”.
(Apologies if I’m misreading you.)
I am relying on a notion of free will.
I understand that every normative decision theory adopts the assumption (convenient fiction if you prefer) that the agent being advised is acting of “his own free will”. Otherwise, why bother advising?
Being a compatibilist, as I understand Holy Scripture (i.e. The Sequences) instructs me to be, I see no incompatibility between this “fiction” of free will and the similar fiction of determinism. They model reality at different levels.
For certain purposes, it is convenient to model myself and other “free agents” as totally free in our decisions, but not completely free in carrying out those decisions. For example, my free will ego may decide to quit smoking, but my determined id has some probability of overruling that decision.
Why the distinction between agents which are free and agents which have had their decisions made for them by a programmer, then? Are you talking about cases in which specific circumstances have hard-coded behavioral responses? Every decision every agent makes is ultimately made for it by the agent’s programmer; I suppose I’m wondering where you draw the line.
As a side note, I feel very uncomfortable seeing the sequences referred to as inviolable scripture, even in jest. In my head, it just screams “oh my god how could anyone ever be doing it this wrong arghhhhhh.”
I’m still trying to figure out what I think of that reaction, and do not mention it as a criticism. I think.
I make the distinction because the distinction is important. The programmer makes decisions at one point in time, with his own goals and/or utility functions, and his own knowledge of the world. The agent makes decisions at a different point in time, based on different values and different knowledge of the world. A decision theory which advises the programmer is not superior to a decision theory which advises the agent. Those two decision theories are playing different games.
“Totally free” sounds like too free. You’re not free to actually decide at time T to “decide X at time T+1″ and then actually decide Y at time T+1, since that is against the laws of physics.
It’s my understanding that what goes through your head when you actually decide X at time T+1 is (approximately) what we call TDT. Or you can stick to CDT and not be able to make decisions for your future self.
I upvoted this because it seems to contain a grain of truth, but I’m nervous that someone before me had downvoted it. I don’t know whether that was because it actually is just completely wrong about what TDT is all about, or because you went a bit over the top with “against the laws of physics”.
Situations where CDT loses are precisely those situations where credible precommitment helps you, and inability to credibly precommit hurts you. There’s no shortage of those in game theory.
Ok, those are indeed a reasonable class of decisions to consider. Now, you say that CDT loses. Ok, loses to what? And presumably you don’t mean loses to opponents of your preferred decision theory. You mean loses in the sense of doing less well in the same situation. Now, presumably that means that both CDT and your candidate are playing against the same game opponent, right?
I think you see where I am going here, though I can spell it out if you wish. In claiming the superiority of the other decision theory you are changing the game in an unfair way by opening a communication channel that didn’t exist in the original game statement and which CDT has no way to make use of.
Well, yeah, kind of, that’s one way to look at it. Reformulate the question like this: what would CDT do if that communication channel were available? What general precommitment for future situations would CDT adopt and publish? That’s the question TDT people are trying to solve.
The simplest answer that moves this conversation forward would be “It would pretend to be a TDT agent that keeps its commitments, whenever that act of deception is beneficial to it. It would keep accurate statistics on how often agents claiming to be TDT agents actually are TDT agents, and adjust its priors accordingly.”
Now it is your turn to explain why this strategy violates the rules, whereas your invention of a deception-free channel did not.