A couple of my own experiences. As a kid I devoured Lewis Carroll Epstein’s Thinking Physics, which so easy and fun and filled with pictures it is like a comic book, and I devoured it like one (though I always—always—answered each puzzle before seeing his explanation). Talk about popularizations, this was a frickin comic book. I think it took a week of afternoons to get through. In retrospect I don’t think it misled me. On the contrary, I think I learned a lot from it. My major as an undergraduate was mathematics but I took two semesters of physics along with the regular physics majors in my freshman year, classical mechanics and electromagnetism, so I think I am in a position to judge that book in light of a “real” education.
Second experience. I never took a course in special or general relativity per se, but I touched on both in a graduate course on differential geometry (I think it was). In light of my graduate level understanding of the mathematics of spacetime, I would not say that I had been misled by popularizations of it (though I could not at this point name you which exact popularizations of it I read—Epstein wrote one but I never read it). It has been many years but what I learned in that graduate course regarding special relativity was a certain metric, a simple, trivial metric, called I think minkowski metric (it’s been a while). That metric made the geometric aspects of special relativity utterly trivial, all the familiar amazing geometric predictions of SR regarding lengths and timing just fell right out of it, everything, the flashlight on the train, everything. It was a course on geometry so it didn’t integrate the minkowski geometry with the laws of mechanics, force, acceleration, etc. But my point is this: it did not reveal the popularizations that I had read as a teenager to be a load of bull. On the contrary, it confirmed and completed them.
To compare, I have read some of the “best” popularizations of string theory. I do not feel very enlightened by them. There is no illusion of understanding because there is no belief that I understand. In contrast, I find Feynman’s QED (the thin book, not the theory) enlightening—as far as it goes. The book has modest goals. It does not pretend to arm you with the ability to carry out real-world predictions. So I find popular books to vary tremendously in their ability to convey knowledge.
A couple of my own experiences. As a kid I devoured Lewis Carroll Epstein’s Thinking Physics, which so easy and fun and filled with pictures it is like a comic book, and I devoured it like one (though I always—always—answered each puzzle before seeing his explanation). Talk about popularizations, this was a frickin comic book. I think it took a week of afternoons to get through. In retrospect I don’t think it misled me. On the contrary, I think I learned a lot from it. My major as an undergraduate was mathematics but I took two semesters of physics along with the regular physics majors in my freshman year, classical mechanics and electromagnetism, so I think I am in a position to judge that book in light of a “real” education.
Second experience. I never took a course in special or general relativity per se, but I touched on both in a graduate course on differential geometry (I think it was). In light of my graduate level understanding of the mathematics of spacetime, I would not say that I had been misled by popularizations of it (though I could not at this point name you which exact popularizations of it I read—Epstein wrote one but I never read it). It has been many years but what I learned in that graduate course regarding special relativity was a certain metric, a simple, trivial metric, called I think minkowski metric (it’s been a while). That metric made the geometric aspects of special relativity utterly trivial, all the familiar amazing geometric predictions of SR regarding lengths and timing just fell right out of it, everything, the flashlight on the train, everything. It was a course on geometry so it didn’t integrate the minkowski geometry with the laws of mechanics, force, acceleration, etc. But my point is this: it did not reveal the popularizations that I had read as a teenager to be a load of bull. On the contrary, it confirmed and completed them.
To compare, I have read some of the “best” popularizations of string theory. I do not feel very enlightened by them. There is no illusion of understanding because there is no belief that I understand. In contrast, I find Feynman’s QED (the thin book, not the theory) enlightening—as far as it goes. The book has modest goals. It does not pretend to arm you with the ability to carry out real-world predictions. So I find popular books to vary tremendously in their ability to convey knowledge.