Imagine what people must have thought in 1910 about the feasibility of getting to the Moon or generating energy by artificially splitting atoms (especially within the 20th century).
Imagine what people must have thought in 1910 about the feasibility of getting to the Moon or generating energy by artificially splitting atoms (especially within the 20th century).
Two problems with that sort of comparison: First, something like going to the Moon is a goal, not a technology. Thus, if we have other sources of power, the incentive to work out the details for fusion becomes small. Second, one shouldn’t forget how many technologies have been tried and have fallen by the wayside as not very practical or not at all practical. A good way of getting a handle on this is to read old issue of something like Scientific American from the 1950s and 1960s. Or read scifi from that time period. One of example of historical technology that never showed up on any substantial scale is nuclear powered airplanes, despite a lot of research in the 1950s about them. Similarly, nuclear thermal rockets have not been made. This isn’t because they are impossible, but because they are extremely impractical compared to other technologies. It seems likely that fusion power will fall into the same category. See this article about Project Pluto for example.
These are perfectly valid arguments and I admit that I share your skepticism concerning the economic competitiveness of the fusion technology. I admit, if I had a decision to make about buying some security, the payout of which would depend on the amount of energy produced by fusion power within 30 years, I would not hurry to place any bet.
What I lack is your apparent confidence in ruling out the technology based on the technological difficulties we face at this point in time.
I am always surprised how the opinion of so called experts diverges when it comes to estimating the feasibility and cost of different energy production options (even excluding fusion power). For example there is recent TED video where people discuss the pros and cons of nuclear power. The whole discussion boils down to the question: What are the resources we need in order to produce X amount of energy using
nuclear
wind
solar
biofuel
geothermal
power. For me, the disturbing thing was that the statements about the resource usage (e.g. area consumption, but also risks) of the different technologies were sometimes off by magnitudes.
If we lack the information to produce numbers in the same ballpark even for technologies that we have been using for decades (if not longer), then how much confidence can we have about the viability, costs, risks and competitiveness of a technology, like fusion, that we have not even started to tap.
Re: “Second, one shouldn’t forget how many technologies have been tried and have fallen by the wayside as not very practical or not at all practical. [...] It seems likely that fusion power will fall into the same category.”
Er, not to the governments that have already invested many billions of dollars in fusion research it doesn’t! They have looked into the whole issue of the chances of success.
Imagine what people must have thought in 1910 about the feasibility of getting to the Moon or generating energy by artificially splitting atoms (especially within the 20th century).
Two problems with that sort of comparison: First, something like going to the Moon is a goal, not a technology. Thus, if we have other sources of power, the incentive to work out the details for fusion becomes small. Second, one shouldn’t forget how many technologies have been tried and have fallen by the wayside as not very practical or not at all practical. A good way of getting a handle on this is to read old issue of something like Scientific American from the 1950s and 1960s. Or read scifi from that time period. One of example of historical technology that never showed up on any substantial scale is nuclear powered airplanes, despite a lot of research in the 1950s about them. Similarly, nuclear thermal rockets have not been made. This isn’t because they are impossible, but because they are extremely impractical compared to other technologies. It seems likely that fusion power will fall into the same category. See this article about Project Pluto for example.
These are perfectly valid arguments and I admit that I share your skepticism concerning the economic competitiveness of the fusion technology. I admit, if I had a decision to make about buying some security, the payout of which would depend on the amount of energy produced by fusion power within 30 years, I would not hurry to place any bet.
What I lack is your apparent confidence in ruling out the technology based on the technological difficulties we face at this point in time.
I am always surprised how the opinion of so called experts diverges when it comes to estimating the feasibility and cost of different energy production options (even excluding fusion power). For example there is recent TED video where people discuss the pros and cons of nuclear power. The whole discussion boils down to the question: What are the resources we need in order to produce X amount of energy using
nuclear
wind
solar
biofuel
geothermal
power. For me, the disturbing thing was that the statements about the resource usage (e.g. area consumption, but also risks) of the different technologies were sometimes off by magnitudes.
If we lack the information to produce numbers in the same ballpark even for technologies that we have been using for decades (if not longer), then how much confidence can we have about the viability, costs, risks and competitiveness of a technology, like fusion, that we have not even started to tap.
Ask and ye shall receive: David MacKay, Sustainable energy without the hot air. A free online book that reads like porn for LessWrong regulars.
Yes, I’ve read that (pretty good) book quite a while ago and it is also referenced in the TED talk I mentioned.
This was one of the reasons I was surprised that there is still such a huge disagreement about the figures even among experts.
Re: “Second, one shouldn’t forget how many technologies have been tried and have fallen by the wayside as not very practical or not at all practical. [...] It seems likely that fusion power will fall into the same category.”
Er, not to the governments that have already invested many billions of dollars in fusion research it doesn’t! They have looked into the whole issue of the chances of success.