What if you know jar A is 80% red and jar B is 0% red, and you know you’re looking at one of them, and your confidence that it’s A is 0.625? Then you have probability 0.5 that a bead chosen from the jar in front of you is red, but will update upwards with probability 0.625 if you’re given the information of which jar you’re looking at.
My comment assigns to a probability to updating upwards or downwards in a generic way when new information is given; your comment calculates based on “if you’re given the information of which jar you’re looking at”, which is more concrete. You could also be given other information which would make it more likely you’re looking at B.
What if you know jar A is 80% red and jar B is 0% red, and you know you’re looking at one of them, and your confidence that it’s A is 0.625? Then you have probability 0.5 that a bead chosen from the jar in front of you is red, but will update upwards with probability 0.625 if you’re given the information of which jar you’re looking at.
My comment assigns to a probability to updating upwards or downwards in a generic way when new information is given; your comment calculates based on “if you’re given the information of which jar you’re looking at”, which is more concrete. You could also be given other information which would make it more likely you’re looking at B.