Like, why would I care so much whether experiences are instantiated in this piece of universe over here or that piece of universe over there, if there’s no real sense in which there is more of the experience if it is instantiated in one place than if it is instantiated in the other?
I suspect this question has a similar answer to the question “why would I care so much whether physical phenomena can be interpreted as minds with a simple program or with an extremely complicated program?” E.g., consider the case where locating a mind in space and time takes as many bits as reading it into the activity of your city’s traffic lights. If the latter involves a measure that’s physically real and the former does not, then I don’t think I understand what you mean by that. Measures seem like the kind of thing that can be natural or unnatural but not physically real or physically not real.
It doesn’t seem to me like we have especially strong reasons to believe such a measure to exist, and we certainly shouldn’t believe that there is such a measure with probability 1. So you still have to decide what your preferences are in the absence of an objective probability measure on the universe.
Any probabilistic mix of moral theories has to decide this, and it’s not clear to me that it’s more of a problem for a mix that uses linear utility in the bounded case than for a mix that uses nonlinear utility in the bounded case. When we’re not sure if alternative moral theories are even coherent, we’re more in the domain of moral uncertainty than straightforward EU maximization. Utils in a bounded moral universe and an unbounded moral universe don’t seem like the same type of thing; my intuition is there’s no one-to-one calibration of bounded-moral-universe-utils to unbounded-moral-universe-utils that makes sense, and someone who accepts linear utility conditional on the moral universe being bounded isn’t forced to also accept linear utility conditional on the moral universe being unbounded.
Good point that there can be fairly natural finite measures without there being a canonical or physically real measure. But there’s also a possibility that there is no fairly natural finite measure on the universe either. The universe could be infinite and homogeneous in some sense, so that no point in space is any easier to point to than any other (and consequently, none of them can be pointed to with any finite amount of information).
I suspect this question has a similar answer to the question “why would I care so much whether physical phenomena can be interpreted as minds with a simple program or with an extremely complicated program?” E.g., consider the case where locating a mind in space and time takes as many bits as reading it into the activity of your city’s traffic lights. If the latter involves a measure that’s physically real and the former does not, then I don’t think I understand what you mean by that. Measures seem like the kind of thing that can be natural or unnatural but not physically real or physically not real.
Any probabilistic mix of moral theories has to decide this, and it’s not clear to me that it’s more of a problem for a mix that uses linear utility in the bounded case than for a mix that uses nonlinear utility in the bounded case. When we’re not sure if alternative moral theories are even coherent, we’re more in the domain of moral uncertainty than straightforward EU maximization. Utils in a bounded moral universe and an unbounded moral universe don’t seem like the same type of thing; my intuition is there’s no one-to-one calibration of bounded-moral-universe-utils to unbounded-moral-universe-utils that makes sense, and someone who accepts linear utility conditional on the moral universe being bounded isn’t forced to also accept linear utility conditional on the moral universe being unbounded.
Good point that there can be fairly natural finite measures without there being a canonical or physically real measure. But there’s also a possibility that there is no fairly natural finite measure on the universe either. The universe could be infinite and homogeneous in some sense, so that no point in space is any easier to point to than any other (and consequently, none of them can be pointed to with any finite amount of information).