I am a bit surprised if this is surprising—is it not obvious that electric fields will affect neuron activity. Whether a neuron fires depends on the voltage across its membrane (at a point in a particular region at the base of the axon and, it seems, down the axon). The electric field around the neuron will affect this voltage difference as in good old-fashioned electrical theory. This is important for synchrony in firing (as in the brain waves) and that is important for marking synapses between neurons that have fired simultaneously for chemical changes. etc. etc. etc. Fields are not to be thought of as a little side effect.
What is more interesting is what the fields do to glial cells and their communication which is (I believe) carried out with calcium ions but very affected by electrical fields. The synapses live in an environment created by the surrounding glia.
The brain cannot be reduced to a bunch of on-off switches.
I am a bit surprised if this is surprising—is it not obvious that electric fields will affect neuron activity. Whether a neuron fires depends on the voltage across its membrane (at a point in a particular region at the base of the axon and, it seems, down the axon). The electric field around the neuron will affect this voltage difference as in good old-fashioned electrical theory. This is important for synchrony in firing (as in the brain waves) and that is important for marking synapses between neurons that have fired simultaneously for chemical changes. etc. etc. etc. Fields are not to be thought of as a little side effect. What is more interesting is what the fields do to glial cells and their communication which is (I believe) carried out with calcium ions but very affected by electrical fields. The synapses live in an environment created by the surrounding glia. The brain cannot be reduced to a bunch of on-off switches.