Getting the easy things right shows respect for your readers and is the best training for dealing with the hard things.
If they don’t believe the evidence, they’ll reject the reasons and, with them, your claim.
We saw previously that claims ought to be supported with reasons, and reasons ought to be based on evidence. Now we will look closer at reasons and evidence.
Reasons must be in a clear, logical order. Atomically, readers need to buy each of your reasons, but compositionally they need to buy your logic. Storyboarding is a useful technique for arranging reasons into a logical order: physical arrangements of index cards, or some DAG-like syntax. Here, you can list evidence you have for each reason or, if you’re speculating, list the kind of evidence you would need.
When storyboarding, you want to read out the top level reasons as a composite entity without looking at the details (evidence), because you want to make sure the high-level logic makes sense.
Readers will not accept a reason until they see it anchored in what they consider to be a bedrock of established fact. … To count as evidence, a statement must report something that readers agree not to question, at least for the purposes of the argument. But if they do question it, what you think is hard factual evidence is for them only a reason, and you have not yet reached that bedrock of evidence on which your argument must rest.
I think there is a contract between you and the reader. You must agree to cite sources that are plausibly truthful, and your reader must agree to accept that these sources are reliable. A diligent and well-meaning reader can always second-guess whether, for instance, the beureau of subject matter statistics is collecting and reporting data correctly, but at a certain point this violates the social contract. If they’re genuinely curious or concerned, it may fall on them to investigate the source, not on you. The bar you need to meet is that your sources are plausibly trustworthy. The book doesn’t talk much about this contract, so there’s little I can say about what “plausible” means.
Sometimes you have to be extra careful to distinguish reasons from evidence, a (<claim>, <reason>, <evidence>) tuple is subject to regress in the latter two components, (A, B, C) may need to be justified by (B, C, D) and so on. The example given of this regress is if I told you (american higher education must curb escalating tuition costs, because the price of college is becoming an impediment to the american dream, today a majority of students leave college with a crushing debt burden). In the context of this sentence, “a majority of students...” is evidence, but it would be reasonable to ask for more specifics. In principle, any time information is compressed it may be reasonable to ask for more specifics. A new tuple might look like (the price of college is becoming an impediment to the american dream, because today a majority of students leave college with a crushing debt burden, in 2013 nearly 70% of students borrowed money for college with loans averaging $30000...). The third component is still compressing information, but it’s not in the contract between you and the reader for the reader to demand the raw spreadsheet, so this second tuple might be a reasonable stopping point of the regress.
If you can imagine readers plausibly asking, not once but many times, how do you know that? What facts make it true?, you have not yet reached what readers want—a bedrock of uncontested evidence.
Sometimes you have to be careful to distinguish evidence from reports of it. Again, because we are necessarily dealing with compressed information, we can’t often point directly to evidence. Even a spreadsheet, rather than summary statistics of it, is a compression of the phenomena in base reality that it tracks.
data you take from a source have invariably been shaped by that source, not to misrepresent them, but to put them in a form that serves that source’s ends. … when you in turn report those data as your own evidence, you cannot avoid manipulating them once again, at least by putting them in a new context.
There is a criteria you want to screen your evidence with respect to.
sufficient
representative
accurate
precise
authoritative
Being honest about the reliability and prospective accuracy of evidence is always a positive signal. Evidence can be either too precise or not precise enough. The women in one or two of Shakespeare’s plays do not represent all his women, they are not representative. Figure out what sorts of authority signals are considered credible in your community, and seek to emulate them.
thoughts on chapter 9 of Craft of Research
We saw previously that claims ought to be supported with reasons, and reasons ought to be based on evidence. Now we will look closer at reasons and evidence.
Reasons must be in a clear, logical order. Atomically, readers need to buy each of your reasons, but compositionally they need to buy your logic. Storyboarding is a useful technique for arranging reasons into a logical order: physical arrangements of index cards, or some DAG-like syntax. Here, you can list evidence you have for each reason or, if you’re speculating, list the kind of evidence you would need.
When storyboarding, you want to read out the top level reasons as a composite entity without looking at the details (evidence), because you want to make sure the high-level logic makes sense.
I think there is a contract between you and the reader. You must agree to cite sources that are plausibly truthful, and your reader must agree to accept that these sources are reliable. A diligent and well-meaning reader can always second-guess whether, for instance, the beureau of subject matter statistics is collecting and reporting data correctly, but at a certain point this violates the social contract. If they’re genuinely curious or concerned, it may fall on them to investigate the source, not on you. The bar you need to meet is that your sources are plausibly trustworthy. The book doesn’t talk much about this contract, so there’s little I can say about what “plausible” means.
Sometimes you have to be extra careful to distinguish reasons from evidence, a
(<claim>, <reason>, <evidence>)
tuple is subject to regress in the latter two components,(A, B, C)
may need to be justified by(B, C, D)
and so on. The example given of this regress is if I told you(american higher education must curb escalating tuition costs, because the price of college is becoming an impediment to the american dream, today a majority of students leave college with a crushing debt burden)
. In the context of this sentence, “a majority of students...” is evidence, but it would be reasonable to ask for more specifics. In principle, any time information is compressed it may be reasonable to ask for more specifics. A new tuple might look like(the price of college is becoming an impediment to the american dream, because today a majority of students leave college with a crushing debt burden, in 2013 nearly 70% of students borrowed money for college with loans averaging $30000...)
. The third component is still compressing information, but it’s not in the contract between you and the reader for the reader to demand the raw spreadsheet, so this second tuple might be a reasonable stopping point of the regress.Sometimes you have to be careful to distinguish evidence from reports of it. Again, because we are necessarily dealing with compressed information, we can’t often point directly to evidence. Even a spreadsheet, rather than summary statistics of it, is a compression of the phenomena in base reality that it tracks.
There is a criteria you want to screen your evidence with respect to.
sufficient
representative
accurate
precise
authoritative
Being honest about the reliability and prospective accuracy of evidence is always a positive signal. Evidence can be either too precise or not precise enough. The women in one or two of Shakespeare’s plays do not represent all his women, they are not representative. Figure out what sorts of authority signals are considered credible in your community, and seek to emulate them.