I think a property of my theory of change is that academic and commercial speed is a bottleneck. I recently realized that my mass assignment for timelines synchronized with my mass assignment for the prosaic/nonprosaic axis. The basic idea is that let’s say a radical new paper that blows up and supplants the entire optimization literature gets pushed to the arxiv tomorrow, signaling the start of some paradigm that we would call nonprosaic. The lag time for academics and industry to figure out what’s going on, figure out how to build on that result, for developer ecosystems to form, would all compound to take us outside of what we would call “short timelines”.
The reasoning assumes that ideas are first generated in academia and don’t arise inside of companies. With DeepMind outperforming the academic protein folding community when protein folding isn’t even the main focus of DeepMind I consider it plausible that new approaches arise within a company and get only released publically when they are strong enough to have an effect.
Even if there’s a paper most radical new papers get ignored by most people and it might be that in the beginning only one company takes the idea seriously and doesn’t talk about it publically to keep a competive edge.
That’s totally fair, but I have a wild guess that the pipeline from google brain to google products is pretty nontrivial to traverse, and not wholly unlike the pipeline from arxiv to product.
Like, AlexNet was 2012, DeepMind patented deep Q learning in 2014, the first TensorFlow release was 2015, the first PyTorch release was 2016, the first TPU was 2016, and by 2019 we had billion-parameter GPT-2 …
So if you say “Short is ≤2 years”, then yeah, I agree. If you say “Short is ≤8 years”, I think I’d disagree, I think 8 years might be plenty for a non-prosaic approach. (I think there are a lot of people for whom AGI in 15-20 years still counts as “short timelines”. Depends on who you’re talking to, I guess.)
I should’ve mentioned in OP but I was lowkey thinking upper bound on “short” would be 10 years.
I think developer ecosystems are incredibly slow (longer than ten years for a new PL to gain penetration, for instance). I guess under a singleton “one company drives TAI on its own” scenario this doesn’t matter, because tooling tailored for a few teams internal to the same company is enough which can move faster than a proper developer ecosystem. But under a CAIS-like scenario there would need to be a mature developer ecosystem, so that there could be competition.
I feel like 7 years from AlexNet to the world of PyTorch, TPUs, tons of ML MOOCs, billion-parameter models, etc. is strong evidence against what you’re saying, right? Or were deep neural nets already a big and hot and active ecosystem even before AlexNet, more than I realize? (I wasn’t paying attention at the time.)
Moreover, even if not all the infrastructure of deep neural nets transfers to a new family of ML algorithms, much of it will. For example, the building up of people and money in ML, the building up of GPU / ASIC servers and the tools to use them, the normalization of the idea that it’s reasonable to invest millions of dollars to train one model and to fab ASICs tailored to a particular ML algorithm, the proliferation of expertise related to parallelization and hardware-acceleration, etc. So if it took 7 years from AlexNet to smooth turnkey industrial-scale deep neural nets and billion-parameter models and zillions of people trained to use them, then I think we can guess <7 years to get from a different family of learning algorithms to the analogous situation. Right? Or where do you disagree?
No you’re right. I think I’m updating toward thinking there’s a region of nonprosaic short-timelines universes. Overall it still seems like that region is relatively much smaller than prosaic short-timelines and nonprosaic long-timelines, though.
nonprosaic ai will not be on short timelines
I think a property of my theory of change is that academic and commercial speed is a bottleneck. I recently realized that my mass assignment for timelines synchronized with my mass assignment for the prosaic/nonprosaic axis. The basic idea is that let’s say a radical new paper that blows up and supplants the entire optimization literature gets pushed to the arxiv tomorrow, signaling the start of some paradigm that we would call nonprosaic. The lag time for academics and industry to figure out what’s going on, figure out how to build on that result, for developer ecosystems to form, would all compound to take us outside of what we would call “short timelines”.
How flawed is this reasoning?
The reasoning assumes that ideas are first generated in academia and don’t arise inside of companies. With DeepMind outperforming the academic protein folding community when protein folding isn’t even the main focus of DeepMind I consider it plausible that new approaches arise within a company and get only released publically when they are strong enough to have an effect.
Even if there’s a paper most radical new papers get ignored by most people and it might be that in the beginning only one company takes the idea seriously and doesn’t talk about it publically to keep a competive edge.
That’s totally fair, but I have a wild guess that the pipeline from google brain to google products is pretty nontrivial to traverse, and not wholly unlike the pipeline from arxiv to product.
How short is “short” for you?
Like, AlexNet was 2012, DeepMind patented deep Q learning in 2014, the first TensorFlow release was 2015, the first PyTorch release was 2016, the first TPU was 2016, and by 2019 we had billion-parameter GPT-2 …
So if you say “Short is ≤2 years”, then yeah, I agree. If you say “Short is ≤8 years”, I think I’d disagree, I think 8 years might be plenty for a non-prosaic approach. (I think there are a lot of people for whom AGI in 15-20 years still counts as “short timelines”. Depends on who you’re talking to, I guess.)
I should’ve mentioned in OP but I was lowkey thinking upper bound on “short” would be 10 years.
I think developer ecosystems are incredibly slow (longer than ten years for a new PL to gain penetration, for instance). I guess under a singleton “one company drives TAI on its own” scenario this doesn’t matter, because tooling tailored for a few teams internal to the same company is enough which can move faster than a proper developer ecosystem. But under a CAIS-like scenario there would need to be a mature developer ecosystem, so that there could be competition.
I feel like 7 years from AlexNet to the world of PyTorch, TPUs, tons of ML MOOCs, billion-parameter models, etc. is strong evidence against what you’re saying, right? Or were deep neural nets already a big and hot and active ecosystem even before AlexNet, more than I realize? (I wasn’t paying attention at the time.)
Moreover, even if not all the infrastructure of deep neural nets transfers to a new family of ML algorithms, much of it will. For example, the building up of people and money in ML, the building up of GPU / ASIC servers and the tools to use them, the normalization of the idea that it’s reasonable to invest millions of dollars to train one model and to fab ASICs tailored to a particular ML algorithm, the proliferation of expertise related to parallelization and hardware-acceleration, etc. So if it took 7 years from AlexNet to smooth turnkey industrial-scale deep neural nets and billion-parameter models and zillions of people trained to use them, then I think we can guess <7 years to get from a different family of learning algorithms to the analogous situation. Right? Or where do you disagree?
No you’re right. I think I’m updating toward thinking there’s a region of nonprosaic short-timelines universes. Overall it still seems like that region is relatively much smaller than prosaic short-timelines and nonprosaic long-timelines, though.