It seems to me like “fine-tuning” usually just means a small amount of extra training on top of a model that’s already been trained, whether that’s supervised, autoregressive, RL, or whatever. I don’t find that language confusing in itself. It is often important to distinguish different kinds of fine-tuning, just as it’s often important to distinguish different kinds of training in general, and adjectives seem like a pretty reasonable way to do that.
I’d be open to changing my usage if I saw some data on other people also using or interpreting “fine-tuning” to mean “fine-tuning with a differentiable objective.” I talk a fair amount with people who use fine-tuning in the broader sense, and haven’t noticed practitioners using it more narrowly / didn’t realize this might cause confusion.
It seems to me like “fine-tuning” usually just means a small amount of extra training on top of a model that’s already been trained, whether that’s supervised, autoregressive, RL, or whatever. I don’t find that language confusing in itself. It is often important to distinguish different kinds of fine-tuning, just as it’s often important to distinguish different kinds of training in general, and adjectives seem like a pretty reasonable way to do that.
I’d be open to changing my usage if I saw some data on other people also using or interpreting “fine-tuning” to mean “fine-tuning with a differentiable objective.” I talk a fair amount with people who use fine-tuning in the broader sense, and haven’t noticed practitioners using it more narrowly / didn’t realize this might cause confusion.