I enjoy that you have an algorithm which presumes the existence of some hypothetical mechanism, whereas researchers in labs have been elucidating these mechanisms for years without any necessarily coherent vision of agentic architectures <3
I think there’s gotta be some way that it can do things like that. I feel like those kinds of feats of wiring are absolutely required for all kinds of reasons. Like, I think motor cortex connects directly to spinal hand-control nerves, but not foot-control nerves. How do the output neurons aim their paths so accurately, such that they don’t miss and connect to the foot nerves by mistake? Um, I don’t know, but it’s clearly possible. “Molecular signaling” or something, I guess?
One of the main idioms of brain wiring is basically for axon tips to do chemotaxis (often through various way stations, in sequence) and then if they find the right home base they notice and “decide” to survive, and otherwise they commit suicide and have to be cleaned up (probably to save on neural metabolic demands? and/or to reduce noise?) but then it seems like maybe there are numerous similar systems all kind of working in parallel, each with little details like the “homotopic connections” between each spot in one hemisphere and its rough cognate in the other hemisphere, through the corpus callosum?
The normal way it works, I think, is for people to get the big picture wiring diagram by simply looking, and then do biochemistry and so on, and then back their way into vague hunches about what algorithms could be consistent with such diagrams and mechanisms? You seem to be going in “algorithms first” instead :-)
Thanks!! And thanks for the wiring references! Such intricate complexity everywhere you look! Sometimes I wonder “how is there so much to say about neuroscience that we can write 50,000 neuroscience papers each year, year after year?”, and then I see stuff like this and say “Oh, that’s how.” :-P
I enjoy that you have an algorithm which presumes the existence of some hypothetical mechanism, whereas researchers in labs have been elucidating these mechanisms for years without any necessarily coherent vision of agentic architectures <3
Its like you don’t know about keywords like “growth cone” or “chemotaxis” or attempts to visualize chemoattractant gradients!
One of the main idioms of brain wiring is basically for axon tips to do chemotaxis (often through various way stations, in sequence) and then if they find the right home base they notice and “decide” to survive, and otherwise they commit suicide and have to be cleaned up (probably to save on neural metabolic demands? and/or to reduce noise?) but then it seems like maybe there are numerous similar systems all kind of working in parallel, each with little details like the “homotopic connections” between each spot in one hemisphere and its rough cognate in the other hemisphere, through the corpus callosum?
The normal way it works, I think, is for people to get the big picture wiring diagram by simply looking, and then do biochemistry and so on, and then back their way into vague hunches about what algorithms could be consistent with such diagrams and mechanisms? You seem to be going in “algorithms first” instead :-)
Thanks!! And thanks for the wiring references! Such intricate complexity everywhere you look! Sometimes I wonder “how is there so much to say about neuroscience that we can write 50,000 neuroscience papers each year, year after year?”, and then I see stuff like this and say “Oh, that’s how.” :-P