Just wanted to mention that you can trade the EPR-style non-locality for macroscopic many worlds. For all its failings, this approach pushes the strangeness of QM into a local event where the branches interact. In the EPR example, it is where you compare the measurement results from the two detectors. Thus it might be more productive to base any DAG model on an MWI picture, or at least on a setup where there are only a finite and small number of branches, not uncountably many of them, like in Schrodinger’s cat or EPR, maybe something like this quantum bomb tester.
I am not familiar with using DAG in QM, sorry.
Just wanted to mention that you can trade the EPR-style non-locality for macroscopic many worlds. For all its failings, this approach pushes the strangeness of QM into a local event where the branches interact. In the EPR example, it is where you compare the measurement results from the two detectors. Thus it might be more productive to base any DAG model on an MWI picture, or at least on a setup where there are only a finite and small number of branches, not uncountably many of them, like in Schrodinger’s cat or EPR, maybe something like this quantum bomb tester.
The “non-DAG jargon” question is: “what are the ontological implications of Tsirelson inequalities?”
My point is that this has the feel of one of those questions with an answer that will be very obvious (but only in hindsight).