(1) Same architecture and hyperparameters, trained separately on every game.
(4) It might work. In fact they also tested it on a benchmark that involves controlling a robot in a simulation, and showed it beats state-of-the-art on the same amount of training data (but there is no “human performance” to compare to).
(5) The poor sample complexity was one of the strongest arguments for why deep learning is not enough for AGI. So, this is a significant update in the direction of “we don’t need that many more new ideas to reach AGI”. Another implication is that model-based RL seems to be pulling way ahead of model-free RL.
(1) Same architecture and hyperparameters, trained separately on every game.
(4) It might work. In fact they also tested it on a benchmark that involves controlling a robot in a simulation, and showed it beats state-of-the-art on the same amount of training data (but there is no “human performance” to compare to).
(5) The poor sample complexity was one of the strongest arguments for why deep learning is not enough for AGI. So, this is a significant update in the direction of “we don’t need that many more new ideas to reach AGI”. Another implication is that model-based RL seems to be pulling way ahead of model-free RL.