Math certainly has ambiguous generalizations. As the image hints, these are also studied in category theory. Usually, when you must select one, the one of interest is the least general one that holds for each of your objects of study. In the image, this is always unique. I’m guessing that’s why bicentric has a name. I’ll pass on the question of how often this turns out unique in general.
Math certainly has ambiguous generalizations. As the image hints, these are also studied in category theory. Usually, when you must select one, the one of interest is the least general one that holds for each of your objects of study. In the image, this is always unique. I’m guessing that’s why bicentric has a name. I’ll pass on the question of how often this turns out unique in general.