To be clear: I don’t think the results here are qualitatively more grounded than e.g. other work in the activation steering/linear probing/representation engineering space. My comment was defense of studying harmlessness in general and less so of this work in particular.
If the objection isn’t about this work vs other rep eng work, I may be confused about what you’re asking about. It feels pretty obvious that this general genre of work (studying non-cherry picked phenomena using basic linear methods) is as a whole more grounded than a lot of mech interp tends to be? And I feel like it’s pretty obvious that addressing issues with current harmlessness training, if they improve on state of the art, is “more grounded” than “we found a cool SAE feature that correlates with X and Y!”? In the same way that just doing AI control experiments is more grounded than circuit discovery on algorithmic tasks.
And I feel like it’s pretty obvious that addressing issues with current harmlessness training, if they improve on state of the art, is “more grounded” than “we found a cool SAE feature that correlates with X and Y!”?
Yeah definitely I agree with the implication, I was confused because I don’t think that these techniques do improve on state of the art.
If that were true, I’d expect the reactions to a subsequent LLAMA3 weight orthogonalization jailbreak to be more like “yawn we already have better stuff” and not “oh cool, this is quite effective!” Seems to me from reception that this is letting people either do new things or do it faster, but maybe you have a concrete counter-consideration here?
Being used by Simon Lerman, an author on Bad LLama (admittedly with help of Andy Arditi, our first author) to jailbreak LLaMA3 70B to help create data for some red-teaming research, (EDIT: rather than Simon choosing to fine-tune it, which he clearly knows how to do, being a Bad LLaMA author).
To be clear: I don’t think the results here are qualitatively more grounded than e.g. other work in the activation steering/linear probing/representation engineering space. My comment was defense of studying harmlessness in general and less so of this work in particular.
If the objection isn’t about this work vs other rep eng work, I may be confused about what you’re asking about. It feels pretty obvious that this general genre of work (studying non-cherry picked phenomena using basic linear methods) is as a whole more grounded than a lot of mech interp tends to be? And I feel like it’s pretty obvious that addressing issues with current harmlessness training, if they improve on state of the art, is “more grounded” than “we found a cool SAE feature that correlates with X and Y!”? In the same way that just doing AI control experiments is more grounded than circuit discovery on algorithmic tasks.
Yeah definitely I agree with the implication, I was confused because I don’t think that these techniques do improve on state of the art.
If that were true, I’d expect the reactions to a subsequent LLAMA3 weight orthogonalization jailbreak to be more like “yawn we already have better stuff” and not “oh cool, this is quite effective!” Seems to me from reception that this is letting people either do new things or do it faster, but maybe you have a concrete counter-consideration here?
This is a very reasonable criticism. I don’t know, I’ll think about it. Thanks.
Thanks, I’d be very curious to hear if this meets your bar for being impressed, or what else it would take! Further evidence:
Passing the Twitter test (for at least one user)
Being used by Simon Lerman, an author on Bad LLama (admittedly with help of Andy Arditi, our first author) to jailbreak LLaMA3 70B to help create data for some red-teaming research, (EDIT: rather than Simon choosing to fine-tune it, which he clearly knows how to do, being a Bad LLaMA author).