Drexler has some scenarios, based as far as I can tell in solid science, showing that the nanotech manufacturing revolution could be extremely rapid. And an economy based upon raw materials and energy is very far from our current one (and nanotech recycling could have large effects on the need for raw materials; energy is the main bottle neck, in theory).
You would need some kind of energy source with a very high and rapid EROEI to scale up in such a sudden way, e.g. solar cells that required very, very, little energy to make, including harvesting all the raw materials.
You seem to be arguing that we can’t have a massive gain in value just from re-arranging our current resources better. The raw energy and resource requirements to build a cruise missile are pretty small; given unenriched uranium, the raw energy required to build a nuclear-armed cruise missile is also pretty small. Not to mention tiny camera and drones; a lot of designs are out there, just impossible to assemble in current technology.
Drexler has some scenarios, based as far as I can tell in solid science, showing that the nanotech manufacturing revolution could be extremely rapid. And an economy based upon raw materials and energy is very far from our current one (and nanotech recycling could have large effects on the need for raw materials; energy is the main bottle neck, in theory).
You would need some kind of energy source with a very high and rapid EROEI to scale up in such a sudden way, e.g. solar cells that required very, very, little energy to make, including harvesting all the raw materials.
You seem to be arguing that we can’t have a massive gain in value just from re-arranging our current resources better. The raw energy and resource requirements to build a cruise missile are pretty small; given unenriched uranium, the raw energy required to build a nuclear-armed cruise missile is also pretty small. Not to mention tiny camera and drones; a lot of designs are out there, just impossible to assemble in current technology.