Indeed you could, but that problem is already present in the definition of Kolmogorov complexity. It’s only defined up to an arbitrary additive constant determined by (in one formulation) the choice of a universal Turing machine. The Kolmogorov complexity of a string is the size of the shortest input for that UTM that produces that string as output, but there’s nothing in the definition to prevent the UTM from having any finite set of arbitrary strings on speed-dial.
Kelly deals with this by looking at complexity from other angles. For example, a complex world can give you a long sequence of observations persuading you that it’s a simple world and then suddenly “change its mind”, but a simple world cannot pretend that it’s complex.
Indeed you could, but that problem is already present in the definition of Kolmogorov complexity. It’s only defined up to an arbitrary additive constant determined by (in one formulation) the choice of a universal Turing machine. The Kolmogorov complexity of a string is the size of the shortest input for that UTM that produces that string as output, but there’s nothing in the definition to prevent the UTM from having any finite set of arbitrary strings on speed-dial.
Kelly deals with this by looking at complexity from other angles. For example, a complex world can give you a long sequence of observations persuading you that it’s a simple world and then suddenly “change its mind”, but a simple world cannot pretend that it’s complex.
Why not? It would look almost exactly like the complex worlds imitating it, wouldn’t it?