I lived through this transition too, as a software developer. At least in my circles it was obvious that serial processing speeds would hit a wall, that wall would be somewhere in the single-digit Ghz, and from then on scaling would be added concurrency.
The reason is very simple to explain: we were approaching physical limits at human scale. A typical chip today is ~2Ghz. The speed of light is a fundamental limiter in electronics, and in one cycle of a 2Ghz chip light moves only 15cm. Ideally that’s still one order of magnitude of breathing room, but in reality there are unavoidable complicating factors: electricity doesn’t move across gates at the speed of light, circuits are not straight lines, etc. If you want a chip that measures on the order of 1-2 cm in size, then you are fundamentally limited to device operations in the single-digit Ghz range.
Singularity technology like molecular nanotechnology promises faster computation through smaller devices. A molecular computer the size of a present-day computer chip would offer tremendous serial speedups for core sizes a micrometer or smaller in size, but device-wide operations would still be limited to ~2Ghz. Getting around that would require getting around Einstein.
I lived through this transition too, as a software developer. At least in my circles it was obvious that serial processing speeds would hit a wall, that wall would be somewhere in the single-digit Ghz, and from then on scaling would be added concurrency.
The reason is very simple to explain: we were approaching physical limits at human scale. A typical chip today is ~2Ghz. The speed of light is a fundamental limiter in electronics, and in one cycle of a 2Ghz chip light moves only 15cm. Ideally that’s still one order of magnitude of breathing room, but in reality there are unavoidable complicating factors: electricity doesn’t move across gates at the speed of light, circuits are not straight lines, etc. If you want a chip that measures on the order of 1-2 cm in size, then you are fundamentally limited to device operations in the single-digit Ghz range.
Singularity technology like molecular nanotechnology promises faster computation through smaller devices. A molecular computer the size of a present-day computer chip would offer tremendous serial speedups for core sizes a micrometer or smaller in size, but device-wide operations would still be limited to ~2Ghz. Getting around that would require getting around Einstein.