The idea of a derivative is definitely worth understanding and you can understand it without being able to do a lot of actual derivatives. Most “practice” of doing derivatives is applying a set of rules you learn for exponents, chain rule, and so on. BUT if you understand the concept, you should be able to derive some or all of these rules, which is a form of doing problems. Make sure you can derive the rule for differentiating x^n from infinitesimals, for example. That always made me happier to apply the rules without thinking I was doing something arbitrary.
This is a good suggestion for improving math skills. As you get to moderately advanced math, “Prove X” rather than “Calculate X” is often a very helpful kind of exercise to do, and is especially good for developing your mathematical intuition, that sense of where to go next that’s also very useful in calculation problems.
The idea of a derivative is definitely worth understanding and you can understand it without being able to do a lot of actual derivatives. Most “practice” of doing derivatives is applying a set of rules you learn for exponents, chain rule, and so on. BUT if you understand the concept, you should be able to derive some or all of these rules, which is a form of doing problems. Make sure you can derive the rule for differentiating x^n from infinitesimals, for example. That always made me happier to apply the rules without thinking I was doing something arbitrary.
This is a good suggestion for improving math skills. As you get to moderately advanced math, “Prove X” rather than “Calculate X” is often a very helpful kind of exercise to do, and is especially good for developing your mathematical intuition, that sense of where to go next that’s also very useful in calculation problems.