The Kelly Criterion maximizes the growth of your bankroll over time. This is probably not actually the goal that you personally have for wealth, because of the nonlinearity of money. You (if you’re like everyone else) care much more about preserving wealth, once you have some, than you do about growing it.
Some of this might be loss aversion, but mostly this is right—going from $1M to $2M is nice but far from a doubling in your happiness or ability to do things; going from $1M to zero is a disaster. Kelly doesn’t take that into account, except in the purely mathematical way that if you literally go to zero you can’t make any more bets (which never happens).
For this reason, professional gamblers I know tend to bet half-Kelly to balance out bankroll preservation with growth. (Source: used to be a pro poker player.)
On the flipside, if you have another source of income, you can bet more aggressively. For instance, if you have a job that generates positive savings, you can count unearned savings as part of your bankroll for Kelly purposes. This is a huge advantage pure pro gamblers don’t have. You probably don’t want to be too too aggressive there, and how much to count will depend on the stability and/or fungibility of your income. A year or two of savings could be appropriate.
None of this should change your bottom line that you should take +EV longshot bets if you’ve been passing on them, just how much you should bet.
Kelly does kinda take nonlinearity of money into account, in the following sense.
Suppose your utility increases logarithmically with bankroll. (I think it’s widely thought that actually it grows a bit slower than that, but logarithmically will do.) Suppose you make a bet that with probability p wins you a fraction x of your bankroll and with probability 1-p loses you a fraction bx. You get to choose x but not p or b. Then your expected utility on making the bet is plog(1+x)+(1−p)log(1−bx) whose derivative w.r.t. x is p1+x−(1−p)b1−bx=p(1+b)−b(1+x)(1+x)(1−bx). You get max expected utility when p(1+b)=b(1+x) or equivalently when x=p(1+b)−bb which is exactly the Kelly bet. So betting Kelly maximizes your (short-term) expected utility, if your utility grows logarithmically with bankroll.
Well, near zero utility ~ log(wealth) would mean infinite negative utility for zero wealth. That seems obviously false—I would hate to lose all my possessions but I wouldn’t consider it infinitely bad and I can think of other things that I would hate more. (So near zero I think reality is less nonlinear than the log(bankroll) assumption treats it as being.) In reality, of course, your real wealth basically never goes all the way to zero because pretty much everyone has nonzero earning power or benevolence-of-friends or national-safety-net, and in any case when you’re contemplating Kelly-style bets I think it’s common to use something smaller than the total value of all your possessions as the bankroll in the calculation.
The Kelly Criterion maximizes the growth of your bankroll over time. This is probably not actually the goal that you personally have for wealth, because of the nonlinearity of money. You (if you’re like everyone else) care much more about preserving wealth, once you have some, than you do about growing it.
Some of this might be loss aversion, but mostly this is right—going from $1M to $2M is nice but far from a doubling in your happiness or ability to do things; going from $1M to zero is a disaster. Kelly doesn’t take that into account, except in the purely mathematical way that if you literally go to zero you can’t make any more bets (which never happens).
For this reason, professional gamblers I know tend to bet half-Kelly to balance out bankroll preservation with growth. (Source: used to be a pro poker player.)
On the flipside, if you have another source of income, you can bet more aggressively. For instance, if you have a job that generates positive savings, you can count unearned savings as part of your bankroll for Kelly purposes. This is a huge advantage pure pro gamblers don’t have. You probably don’t want to be too too aggressive there, and how much to count will depend on the stability and/or fungibility of your income. A year or two of savings could be appropriate.
None of this should change your bottom line that you should take +EV longshot bets if you’ve been passing on them, just how much you should bet.
Kelly does kinda take nonlinearity of money into account, in the following sense.
Suppose your utility increases logarithmically with bankroll. (I think it’s widely thought that actually it grows a bit slower than that, but logarithmically will do.) Suppose you make a bet that with probability p wins you a fraction x of your bankroll and with probability 1-p loses you a fraction bx. You get to choose x but not p or b. Then your expected utility on making the bet is plog(1+x)+(1−p)log(1−bx) whose derivative w.r.t. x is p1+x−(1−p)b1−bx=p(1+b)−b(1+x)(1+x)(1−bx). You get max expected utility when p(1+b)=b(1+x) or equivalently when x=p(1+b)−bb which is exactly the Kelly bet. So betting Kelly maximizes your (short-term) expected utility, if your utility grows logarithmically with bankroll.
I agree with that, but I think that utility is not even log linear near zero.
Well, near zero utility ~ log(wealth) would mean infinite negative utility for zero wealth. That seems obviously false—I would hate to lose all my possessions but I wouldn’t consider it infinitely bad and I can think of other things that I would hate more. (So near zero I think reality is less nonlinear than the log(bankroll) assumption treats it as being.) In reality, of course, your real wealth basically never goes all the way to zero because pretty much everyone has nonzero earning power or benevolence-of-friends or national-safety-net, and in any case when you’re contemplating Kelly-style bets I think it’s common to use something smaller than the total value of all your possessions as the bankroll in the calculation.