Actually, since this is a deterministic setup, you can go one better and consider an ‘iterated tournament’ as a difference equation in N-dimensional space, where N is the number of strategies you include, and the dimensions represent the proportion of the total population; then you can demonstrate the trajectories the demographics will take from any starting location. There will be a handful of point equilibria, as well as several equilibrium lines (actually, I think, an equilibrium volume, but this depends on which strategies you include), and you can talk about which equilbria are stable / unstable, and decide not to care about strategies who only exist in unstable equilibria. You probably need to require that the population space is seeded with CooperateBot, DefectBot, and possibly FairBot, in order to get neat results.
Actually, since this is a deterministic setup, you can go one better and consider an ‘iterated tournament’ as a difference equation in N-dimensional space, where N is the number of strategies you include, and the dimensions represent the proportion of the total population; then you can demonstrate the trajectories the demographics will take from any starting location. There will be a handful of point equilibria, as well as several equilibrium lines (actually, I think, an equilibrium volume, but this depends on which strategies you include), and you can talk about which equilbria are stable / unstable, and decide not to care about strategies who only exist in unstable equilibria. You probably need to require that the population space is seeded with CooperateBot, DefectBot, and possibly FairBot, in order to get neat results.