You’ll need to read Molecular Repair of the Brain. Note that it discusses a variety of repair methods, including methods which carry out repairs at sufficiently low temperatures (between 4K and 77K) that there is no risk that “molecular drift” would undo previous work. By making incredibly conservative assumptions about the speed of operations, it is possible to stretch out the time required to repair a system the size of the human brain to three years, but really this time was chosen for psychological reasons. Repairing a person “too quickly” seems to annoy people.
You might also want to read Convergent Assembly. As this is a technical paper which makes no mention of controversial topics, it provides more realistic estimates of manufacturing times. Total manufacturing time for rigid objects such as a human brain at (say) 20K are likely to be 100 to 1000 seconds. This does not include the time required to analyze your cryopreserved brain and determine the healthy state, which is likely to be significantly longer. Note that some alterations to the healthy state (the blueprints) will be required prior to manufacture, including various modifications to facilitate manufacture, the inclusion of heating elements for rewarming, and various control systems to monitor and modulate the rewarming and metabolic start-up processes as well as the resumption of consciousness.
After you’ve had time to digest the paper, I’d be interested in your comments. As Ciphergoth has said, there are no (repeat no) credible arguments against the feasibility of cryonics in the extant literature. If you have any, it would be most interesting.
You’ll need to read Molecular Repair of the Brain. Note that it discusses a variety of repair methods, including methods which carry out repairs at sufficiently low temperatures (between 4K and 77K) that there is no risk that “molecular drift” would undo previous work. By making incredibly conservative assumptions about the speed of operations, it is possible to stretch out the time required to repair a system the size of the human brain to three years, but really this time was chosen for psychological reasons. Repairing a person “too quickly” seems to annoy people.
You might also want to read Convergent Assembly. As this is a technical paper which makes no mention of controversial topics, it provides more realistic estimates of manufacturing times. Total manufacturing time for rigid objects such as a human brain at (say) 20K are likely to be 100 to 1000 seconds. This does not include the time required to analyze your cryopreserved brain and determine the healthy state, which is likely to be significantly longer. Note that some alterations to the healthy state (the blueprints) will be required prior to manufacture, including various modifications to facilitate manufacture, the inclusion of heating elements for rewarming, and various control systems to monitor and modulate the rewarming and metabolic start-up processes as well as the resumption of consciousness.
After you’ve had time to digest the paper, I’d be interested in your comments. As Ciphergoth has said, there are no (repeat no) credible arguments against the feasibility of cryonics in the extant literature. If you have any, it would be most interesting.
As a neuroscientist, you might also be amused by Large Scale Analysis of Neural Structures.
For recent work on vitrification, I refer you to Greg Fahy at 21st Century Medicine.