All theories have limits of applicability. For example, Von Neumann-Morgenstern expected utility maximization requires the axiom of independence, which means you can’t be absent-minded (forgetting something and ending up in a previous mental state, like in the Absent-Minded Driver problem). If there’s even a tiny chance that you’re absent-minded, the problem can no longer be cast in VNM terms. That’s where UDT comes in, it can deal with absent-mindedness and many other things. But if there’s even a tiny chance of having more than one reference class, the problem can no longer be cast in UDT terms either. With multiple reference classes you need game theory, not decision theory.
I suppose the difference is that VNM states the limits within it operates, while I haven’t seen the limits of UDT described anywhere apart from this conversation.
All theories have limits of applicability. For example, Von Neumann-Morgenstern expected utility maximization requires the axiom of independence, which means you can’t be absent-minded (forgetting something and ending up in a previous mental state, like in the Absent-Minded Driver problem). If there’s even a tiny chance that you’re absent-minded, the problem can no longer be cast in VNM terms. That’s where UDT comes in, it can deal with absent-mindedness and many other things. But if there’s even a tiny chance of having more than one reference class, the problem can no longer be cast in UDT terms either. With multiple reference classes you need game theory, not decision theory.
I suppose the difference is that VNM states the limits within it operates, while I haven’t seen the limits of UDT described anywhere apart from this conversation.