It should refer to a Turing machine that never halts but cannot be proven in Peano arithmetic not to halt. The second condition is important (otherwise it would just be a Turing machine that never halts, period). I know how to write down such a Turing machine (edit: for an explicit example, consider a Turing machine which is searching for a contradiction in PA); what I don’t know is how this definition can be related to a definition in terms of defining what it means to run a Turing machine for a nonstandard number of steps.
It doesn’t necessarily make sense to talk about running a Turing machine backwards. Also, models of first-order Peano arithmetic do not contain negative numbers; this is ruled out by the axiom that 0 is not a successor.
It should refer to a Turing machine that never halts but cannot be proven in Peano arithmetic not to halt. The second condition is important (otherwise it would just be a Turing machine that never halts, period). I know how to write down such a Turing machine (edit: for an explicit example, consider a Turing machine which is searching for a contradiction in PA); what I don’t know is how this definition can be related to a definition in terms of defining what it means to run a Turing machine for a nonstandard number of steps.
It doesn’t necessarily make sense to talk about running a Turing machine backwards. Also, models of first-order Peano arithmetic do not contain negative numbers; this is ruled out by the axiom that 0 is not a successor.