I think it pretty much only matters as a trivial refutation of (not-object-level) claims that no “serious” people in the field take AI x-risk concerns seriously, and has no bearing on object-level arguments. My guess is that Hinton is somewhat less confused than Yann but I don’t think he’s talked about his models in very much depth; I’m mostly just going off the high-level arguments I’ve seen him make (which round off to “if we make something much smarter than us that we don’t know how to control, that might go badly for us”).
He also argued that digital intelligence is superior to analog human intelligence because, he said, many identical copies can be trained in parallel on different data, and then they can exchange their changed weights. He also said biological brains are worse because they probably use a learning algorithm that is less efficient than backpropagation.
I think it pretty much only matters as a trivial refutation of (not-object-level) claims that no “serious” people in the field take AI x-risk concerns seriously, and has no bearing on object-level arguments. My guess is that Hinton is somewhat less confused than Yann but I don’t think he’s talked about his models in very much depth; I’m mostly just going off the high-level arguments I’ve seen him make (which round off to “if we make something much smarter than us that we don’t know how to control, that might go badly for us”).
He also argued that digital intelligence is superior to analog human intelligence because, he said, many identical copies can be trained in parallel on different data, and then they can exchange their changed weights. He also said biological brains are worse because they probably use a learning algorithm that is less efficient than backpropagation.