″ [1] Somewhat to my own shame, I must admit to ignoring my own observations in this department—even after I saw no discernible effect on my weight or my musculature from aerobic exercise and strength training 2 hours a day 3 times a week, I didn’t really start believing that the virtue theory of metabolism was wrong [2] until after other people had started the skeptical dogpile.”
I am extremely skeptical of this portion, it would imply that Eliezer’s body functions differently then literally every other person (myself included) I have ever known to make a serious attempt at working out.. 2 Hours 3 times a week? How long did you try this?
I am extremely skeptical of this portion, ti would imply that Eliezer’s body functions differently then literally every other person (myself included)I have ever known to make a serious attempt at working out..
Arguing from anecdote, really? Exercise resistance is a thing.
The fact that people respond to exercise differently to weight training and exercise non uniformly depending on their genetics and other factors is no big surprise. But showing no gains at all is something altogether.
I can think of several questions I would ask about the study you linked. For example: “In the combined strength-and-endurance-exercise program, the volunteers’ physiological improvement ranged from a negative 8 percent (meaning they became 8 percent less fit) ” implies to me that the researchers didn’t control for a host of other factors.
Anecdotes ARE data. Especially a life time of several of them all accumulating in one way.
implies to me that the researchers didn’t control for a host of other factors.
Aren’t you just conceding the point right there, and admitting that in fact, there are people who will empirically see a negative or zero effect size to their exercising? Life is thought by most to be full of ‘a host of other factors’...
So you think my point is that exercise is magic? If you built my position out of iron instead of straw, you might find that yes, exercise is not the ONLY important factor for fitness.
Since you seem to have forgotten what you were arguing, let us review. Eliezer wrote:
I saw no discernible effect on my weight or my musculature from aerobic exercise and strength training 2 hours a day 3 times a week
You wrote:
it would imply that Eliezer’s body functions differently then literally every other person (myself included) I have ever known
And implied it must be impossible, hence Eliezer must be doing something wrong.
I linked a study showing that people ‘doing it right’ could see their fitness go down, empirically refuting your universalizing claim that
“every other person (myself included)” would see their fitness only go up.
You then tried to wave away the study by a fully general counter-argument appealing to other factors explaining why some people could see their fitness decrease… But neither I nor Eliezer ever made an argument about what caused the exercise resistance, merely that some people would empirically see their fitness decrease or remain stable.
When I pointed this out, you smarmily replied about how I’m being unfair to you and strawmanning you, and implied that I hold theories of exercise as “magic”.
Personally, I see no need to construct any ‘ironmanning’ of your position, since you do not yet seem to have understood that what we were saying was limited to questions of fact and not speculation about what might explain said observed fact. (What, exactly, is the ironmanning of a fact—as opposed to a theory or paradigm?)
I deny that the study had people all “doing it right”. In Eliezer’s case, I gave him the benefit of the doubt that he was intelligent enough to avoid obvious confounders.
If someone gets sick (for example) towards the end of the study and then shows a “negative 8 percent ” fitness level then their data is crap.
If the study did not control for intensity then it is crap.
The difference between someone actually doing an effortful workout and someone just being present at the gym for a period of time is astronomical, and an extremely common occurrence.
If someone gets sick (for example) towards the end of the study and then shows a “negative 8 percent ” fitness level then their data is crap.
And they could have been sick at the start, as well, producing pseudo gains… You’re postulating things which you have no reason to think happened to explain things that did happen; nowhere is anything indicated about that and you are arguing solely that because you dislike the results, the researchers were incompetent.
If the study did not control for intensity then it is crap.
Why should there be any control for intensity? They did an intervention; there should be a non-zero effect. If any level of exercise does not show any benefits, then you are wrong. And I guess you did not read the link, because several interventions were tested and did not show any difference in terms of exercise resistance.
The study had an age range from 40 and 67...
So? Why do you think that exercise should be entirely ineffective in people age 67? Are 40yos from a different species where exercise does not work? By examining older people, who are much less fit and much more sedentary, shouldn’t the effects be even more dramatic and visible?
Epstein 2014, The Sports Gene, ch6 “Superbaby, Bully Whippets, and the Trainability of Muscle”, pg68:
[...description of Bouchard/HERITAGE Family Study...]
A series of studies in 2007 and 2008 at the University of Alabama-Birmingham’s Core Muscle Research Laboratory and the Veterans Affairs Medical Center in Birmingham showed that individual differences in gene and satellite cell activity are critical to differentiating how people respond to weight training. Sixty-six people of varying ages were put on a four-month strength training plan-squats, leg press, and leg lifts-all matched for effort level as a percentage of the maximum they could lift. (A typical set was eleven reps at 75 percent of the maximum that could be lifted for a single rep.) At the end of the training, the subjects fell rather neatly into three groups: those whose thigh muscle fibers grew 50 percent in size; those whose fibers grew 25 percent; and those who had no increase in muscle size at all. A range from 0 percent to 50 percent improvement, despite identical training. Sound familiar? Just like the HERITAGE Family Study, differences in trainability were immense, only this was strength as opposed to endurance training. Seventeen weight lifters were “extreme responders,” who added muscle furiously; thirty-two were moderate responders, who had decent gains; and seventeen were nonresponders, whose muscle fibers did not grow.*
…The Birmingham researchers took a HERITAGE-like approach in their search for genes that might predict the high satellite cell folk, or high responders, from the low responders to a program of strength training. Just as the HERITAGE and GEAR studies found for endurance, the extreme responders to strength training stood out by the expression levels of certain genes. Muscle biopsies were taken from all subjects before the training started, after the first session, and after the last session. Certain genes were turned up or down similarly in all of the subjects who lifted weights, but others were turned up only in the responders. One of the genes that displayed much more activity in the extreme responders when they trained was IGF-IEa, which is related to the gene that H. Lee Sweeney used to make his Schwarzenegger mice. The other standouts were the MGF and myogenin genes, both involved in muscle function and growth. The activity levels of the MGF and myogenin genes were turned up in the high responders by 126 percent and 65 percent, respectively; in the moderate responders by 73 percent and 41 percent; and not at all in the people who had no muscle growth.
Every similar strength-training study has reported a broad spectrum of responsiveness to iron pumping. In Miami’s GEAR study, the strength gains of 442 subjects in leg press and chest press ranged from under 50 percent to over 200 percent. [108 GEAR study data was generously shared by members of the University of Miami research team.] A twelve-week study of 585 men and women, run by an international consortium of hospitals and universities, found that upper-arm strength gains ranged from zero to over 250 percent.
I don’t even remember this conversation (4 years of necromancy?). I don’t remember the context of our discussion, and it seems like I did a bad job of communicating whatever my original point was and over-exaggerated. I am pretty sure you have a better understanding of the data.
The context was whether exercise resistance was a thing that existed (and hence, whether it was something Eliezer could have). I was revisiting my old comments on the topic to grab the citations I had dug up as part of working on a section for my longevity cost-benefit analysis where I observe that given the phenomenon of exercise resistance, behavioral backlash like lowering basal activity levels, and twin studies indicating various exercise correlations are partially genetically confounded, we should be genuinely doubtful about how much exercise will help with non-athletic or cosmetic things and be demanding randomized trials.
we should be genuinely doubtful about how much exercise will help with non-athletic or cosmetic things.
First, we probably should be interested in the amount of total physical activity—“exercise” implies additional activity besides the baseline and the baseline varies a LOT. Some people work as lumberjacks and some people only move between the couch and the fridge.
Second, as long, as we are expressing wishes about studies, I’d like those studies to focus on differences between groups of people (e.g. run some clustering) and not just smush everything together into overall averages.
Third, there is one more category besides longevity and (athletic and/or cosmetic) -- quality of life. Being fit noticeably improves it and being out of shape makes it worse.
Anecdotes are poisonous data, and it is best to exclude them from your reasoning when possible. They are subject to a massive selection bias. At best they are useful for inferring the existence of something, e.g. “I once saw a plesiosaur in Loch Ness.”. Even then the inference is tenuous because all you know is that there is at least once individual who says they saw a plesiosaur. Inferring the existence of a plesiosaur requires that you have additional supporting evidence that assigns a high probability that they are telling the truth, that their memory has not changed significantly since the original event, and that the original experience was genuine.
While there are individual differences in how fast the neuromuscular system adapts to exercise, the ability to adapt is absolutely required in order to maintain normal function. Significant abnormalities of the neuromuscular system result in disabling conditions such as muscular atrophy or muscular dystrophy.
As far ar I know, Yudkowsky is able-bodied, therefore his muscles must exibit a response to exercise within the normal healthy human range.
The fact that he attempted to train and didn’t observe any significant strength increase is best explained by the hypothesis that he used an improper training regime or just didn’t keep training for long enough, not by the hypothesis that he has some weird alien biology.
As far ar I know, Yudkowsky is able-bodied, therefore his muscles must exibit a response to exercise within the normal healthy human range.
Not quite. It is only implied that he responds to exercise within the range of functional survivability, not normality or healthines.
The fact that he attempted to train and didn’t observe any significant strength increase
A lack of strength increase would be particularly weird. I thought the subject was weight and body composition. The most dramatic early strength increase comes from the ‘neuro’ part of ‘neuromuscular’ so lack of strength increase on a given strength related task when going from sedentary to performing said task regularly would indicate a much more significant problem than merely failing to gain significant muscle mass.
is best explained by the hypothesis that he used an improper training regime or just didn’t keep training for long enough, not by the hypothesis that he has some weird alien biology.
There has been enough information provided that we can reasonably hypothesize that Eliezer’s exercise response is at least a standard deviation or two in the direction of “genetically disadvantaged” on the relevant scale of exercise response.
A lack of strength increase would be particularly weird. I thought the subject was weight and body composition. The most dramatic early strength increase comes from the ‘neuro’ part of ‘neuromuscular’ so lack of strength increase on a given strength related task when going from sedentary to performing said task regularly would indicate a much more significant problem than merely failing to gain significant muscle mass.
That would imply that he has a neurological disorder that impairs motor function only up to the extent that it prevents performances to improve past the requirements of a sedentary lifestyle, but not to the extent to cause actual disability. Is anything like this documented in medical literature?
There has been enough information provided that we can reasonably hypothesize that Eliezer’s exercise response is at least a standard deviation or two in the direction of “genetically disadvantaged” on the relevant scale of exercise response.
It seems to me that Yudkowsky is quite prone to rationalization: he might have started to train, didn’t particularly like it and when he didn’t get the results he hoped for, instead of revising his training program or keep training for a longer time, he came up with the weird genetic condition as an excuse to quit.
At least, this explanation appears to be more likely than the hypothesis that he actually has a weird genetic condition unknown to science, AFAIK.
Does you actually believe in the virtue theory of metabolism, or did you believe in the conservation of energy between ATP synthesized thorough the breakdown of food nutrients being used to synthesize lipids?
There are additional confounding factors, including genetics, heredity separately from genetics (many organelles are not coded in DNA), and environmental factor which cause hormone fluctuations. Seth Roberts’ studies as linked show variations in appetite which cause variations in body fat, and provide a clear theory on a specific mechanism by which appetite can be intentionally altered.
″ [1] Somewhat to my own shame, I must admit to ignoring my own observations in this department—even after I saw no discernible effect on my weight or my musculature from aerobic exercise and strength training 2 hours a day 3 times a week, I didn’t really start believing that the virtue theory of metabolism was wrong [2] until after other people had started the skeptical dogpile.”
I am extremely skeptical of this portion, it would imply that Eliezer’s body functions differently then literally every other person (myself included) I have ever known to make a serious attempt at working out.. 2 Hours 3 times a week? How long did you try this?
About a year.
Were you trying to diet at the same time? Have you ever tried exercising more without also restricting your food intake?
Also, have you ever enjoyed exercising while doing it?
Edit: Just to be clear, this isn’t supposed to be advice, implicit or otherwise. I’m just curious.
Thanks for replying.
If you don’t mind the continued probing: did your ability to lift grow over that time period? Or were you about constant the whole year?
Arguing from anecdote, really? Exercise resistance is a thing.
The fact that people respond to exercise differently to weight training and exercise non uniformly depending on their genetics and other factors is no big surprise. But showing no gains at all is something altogether.
I can think of several questions I would ask about the study you linked. For example: “In the combined strength-and-endurance-exercise program, the volunteers’ physiological improvement ranged from a negative 8 percent (meaning they became 8 percent less fit) ” implies to me that the researchers didn’t control for a host of other factors.
Anecdotes ARE data. Especially a life time of several of them all accumulating in one way.
Aren’t you just conceding the point right there, and admitting that in fact, there are people who will empirically see a negative or zero effect size to their exercising? Life is thought by most to be full of ‘a host of other factors’...
So you think my point is that exercise is magic? If you built my position out of iron instead of straw, you might find that yes, exercise is not the ONLY important factor for fitness.
Since you seem to have forgotten what you were arguing, let us review. Eliezer wrote:
You wrote:
And implied it must be impossible, hence Eliezer must be doing something wrong.
I linked a study showing that people ‘doing it right’ could see their fitness go down, empirically refuting your universalizing claim that “every other person (myself included)” would see their fitness only go up.
You then tried to wave away the study by a fully general counter-argument appealing to other factors explaining why some people could see their fitness decrease… But neither I nor Eliezer ever made an argument about what caused the exercise resistance, merely that some people would empirically see their fitness decrease or remain stable.
When I pointed this out, you smarmily replied about how I’m being unfair to you and strawmanning you, and implied that I hold theories of exercise as “magic”.
Personally, I see no need to construct any ‘ironmanning’ of your position, since you do not yet seem to have understood that what we were saying was limited to questions of fact and not speculation about what might explain said observed fact. (What, exactly, is the ironmanning of a fact—as opposed to a theory or paradigm?)
I deny that the study had people all “doing it right”. In Eliezer’s case, I gave him the benefit of the doubt that he was intelligent enough to avoid obvious confounders.
If someone gets sick (for example) towards the end of the study and then shows a “negative 8 percent ” fitness level then their data is crap.
If the study did not control for intensity then it is crap.
The difference between someone actually doing an effortful workout and someone just being present at the gym for a period of time is astronomical, and an extremely common occurrence.
The study had an age range from 40 and 67...
This study is garbage.
And they could have been sick at the start, as well, producing pseudo gains… You’re postulating things which you have no reason to think happened to explain things that did happen; nowhere is anything indicated about that and you are arguing solely that because you dislike the results, the researchers were incompetent.
Why should there be any control for intensity? They did an intervention; there should be a non-zero effect. If any level of exercise does not show any benefits, then you are wrong. And I guess you did not read the link, because several interventions were tested and did not show any difference in terms of exercise resistance.
So? Why do you think that exercise should be entirely ineffective in people age 67? Are 40yos from a different species where exercise does not work? By examining older people, who are much less fit and much more sedentary, shouldn’t the effects be even more dramatic and visible?
So, in addition to “Individual responses to combined endurance and strength training in older adults”, Karavirta 2011, let me also cite “Endurance training-induced changes in insulin sensitivity and gene expression”, “Individual differences in response to regular physical activity”, “Effects of Exercise Training on Glucose Homeostasis: The HERITAGE Family Study”, “Adverse Metabolic Response to Regular Exercise: Is It a Rare or Common Occurrence?”, “Genomic predictors of trainability”, “Effects of gender, age, and fitness level on response of vo2max to training in 60–71 yr olds”, “Resistance to exercise-induced weight loss: compensatory behavioral adaptations”, and “Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects”, to name a few. (One nice thing about HERITAGE and Bouchard’s earlier studies is that they recorded exercise, so spare me the ‘maybe they didn’t actually exercise’.) In these, too, some people don’t benefit from exercise and show individual differences in exercise trainability exist.
Epstein 2014, The Sports Gene, ch6 “Superbaby, Bully Whippets, and the Trainability of Muscle”, pg68:
I don’t even remember this conversation (4 years of necromancy?). I don’t remember the context of our discussion, and it seems like I did a bad job of communicating whatever my original point was and over-exaggerated. I am pretty sure you have a better understanding of the data.
The context was whether exercise resistance was a thing that existed (and hence, whether it was something Eliezer could have). I was revisiting my old comments on the topic to grab the citations I had dug up as part of working on a section for my longevity cost-benefit analysis where I observe that given the phenomenon of exercise resistance, behavioral backlash like lowering basal activity levels, and twin studies indicating various exercise correlations are partially genetically confounded, we should be genuinely doubtful about how much exercise will help with non-athletic or cosmetic things and be demanding randomized trials.
First, we probably should be interested in the amount of total physical activity—“exercise” implies additional activity besides the baseline and the baseline varies a LOT. Some people work as lumberjacks and some people only move between the couch and the fridge.
Second, as long, as we are expressing wishes about studies, I’d like those studies to focus on differences between groups of people (e.g. run some clustering) and not just smush everything together into overall averages.
Third, there is one more category besides longevity and (athletic and/or cosmetic) -- quality of life. Being fit noticeably improves it and being out of shape makes it worse.
Anecdotes are poisonous data, and it is best to exclude them from your reasoning when possible. They are subject to a massive selection bias. At best they are useful for inferring the existence of something, e.g. “I once saw a plesiosaur in Loch Ness.”. Even then the inference is tenuous because all you know is that there is at least once individual who says they saw a plesiosaur. Inferring the existence of a plesiosaur requires that you have additional supporting evidence that assigns a high probability that they are telling the truth, that their memory has not changed significantly since the original event, and that the original experience was genuine.
I’m wondering if there are studying controlling for exercise enjoyment, among other factors.
While there are individual differences in how fast the neuromuscular system adapts to exercise, the ability to adapt is absolutely required in order to maintain normal function. Significant abnormalities of the neuromuscular system result in disabling conditions such as muscular atrophy or muscular dystrophy.
As far ar I know, Yudkowsky is able-bodied, therefore his muscles must exibit a response to exercise within the normal healthy human range.
The fact that he attempted to train and didn’t observe any significant strength increase is best explained by the hypothesis that he used an improper training regime or just didn’t keep training for long enough, not by the hypothesis that he has some weird alien biology.
Not quite. It is only implied that he responds to exercise within the range of functional survivability, not normality or healthines.
A lack of strength increase would be particularly weird. I thought the subject was weight and body composition. The most dramatic early strength increase comes from the ‘neuro’ part of ‘neuromuscular’ so lack of strength increase on a given strength related task when going from sedentary to performing said task regularly would indicate a much more significant problem than merely failing to gain significant muscle mass.
There has been enough information provided that we can reasonably hypothesize that Eliezer’s exercise response is at least a standard deviation or two in the direction of “genetically disadvantaged” on the relevant scale of exercise response.
That would imply that he has a neurological disorder that impairs motor function only up to the extent that it prevents performances to improve past the requirements of a sedentary lifestyle, but not to the extent to cause actual disability. Is anything like this documented in medical literature?
It seems to me that Yudkowsky is quite prone to rationalization: he might have started to train, didn’t particularly like it and when he didn’t get the results he hoped for, instead of revising his training program or keep training for a longer time, he came up with the weird genetic condition as an excuse to quit. At least, this explanation appears to be more likely than the hypothesis that he actually has a weird genetic condition unknown to science, AFAIK.
Exactly.
Does you actually believe in the virtue theory of metabolism, or did you believe in the conservation of energy between ATP synthesized thorough the breakdown of food nutrients being used to synthesize lipids?
There are additional confounding factors, including genetics, heredity separately from genetics (many organelles are not coded in DNA), and environmental factor which cause hormone fluctuations. Seth Roberts’ studies as linked show variations in appetite which cause variations in body fat, and provide a clear theory on a specific mechanism by which appetite can be intentionally altered.