Somewhat to my own shame, I must admit to ignoring my own observations in this department—even after I saw no discernible effect on my weight or my musculature from aerobic exercise and strength training 2 hours a day 3 times a week, I didn’t really start believing that the virtue theory of metabolism was wrong until after other people had started the skeptical dogpile.
Wait, are you saying that aerobic exercise and strength training don’t have any significant effect on weight?
A person that I trust to be truthful, and who has done research on this topic, has pointed out to me that muscle has a higher density than fat. So if you experience, simultaneously, both an increase in muscle and a decrease in fat, then your weight may very well not change (or even increase, depending on the amount of muscle).
The same person tells me that exercise both increases muscle and decreases fat.
Er, I don’t mean to be too harsh, but I tend to be a bit suspicious when somebody tells me to expect weight loss, and then backpedals and says that maybe an unobservable substitution of muscle for fat took place instead. I realize there are ways this could in principle be verified, if someone was willing to expend enough effort. It is nonetheless suspicious.
I understand your suspicion, and I don’t think you’re being too harsh at all. Scepticism on this point is more likely to improve understanding, after all.
There are ways to measure fat independantly of weight, however. The electrical conductance of fat and muscle differs—you can get scales that will measure both your weight and your conductance, and present you with a figure describing what percentage of your body weight is due to fat. There’s also a machine at my local gym that purports to measure body fat percentage (I’m not entirely sure how it works or how accurate it is), and I have found that if I fail to exercise over a long period of time, then the figure that it measures shows a general upwards trend.
Having done a bit of poking around on this subject, as far as I can tell the model is more or less as follows.
The human body is modelled as a collection of four elements; fat, muscle, water, and bone. The percentages of these different elements can change with diet, with exercise, with different types of exercise. Bone is pretty much constant (though apparently lack of calcium can cause trouble there); water fluctuates a lot. Fat and muscle are more controllable; a given diet and exercise regimen has a target fat percentage and muscle percentage. Starting on the diet/exercise causes the body to approach the target fat/muscle percentage in some manner (it may be asymptotic). For this purpose, lack of exercise also counts as an exercise regimen, and it is one that has a high fat percentage and a low muscle percentage (so if you have been exercising and stop, you gain a fair amount of fat). There is some complicated interaction between the diet and the exercise regimen here. There may be a genetic component also affecting the model.
Each of these four elements—fat, muscle, water, bone—has a certain density, a certain conductivity. There are certain percentages of these elements (I do not know what they are) that would lead to an optimal health (measured as the greatest life expectancy). Given a person’s height, and perhaps a few other measurements, one can estimate the total mass of bone (our skeletons are pretty much standard). From this, and given the optimal percentages, one can estimate the optimal mass of fat, of muscle, for the greatest life expectancy. (Water still fluctuates a lot, as I understand it).
Measurements of these percentages include weight, girth, electrical conductivity, and use of calipers. The first three of these figures measure quantities that are affected by all four percentages; a change in one factor can be masked by a change in the others.
All in all, it’s a far more complex problem than it looks like at first glance. Some heuristics have leaked out into common knowledge; things like “don’t eat too much fatty foods” and “exercise at least a bit”. I am not sure how accurate these heuristics are—presumably there is some reasoning backing them, possibly based on the model vaguely described above. I also suspect that the idea of the ideal weight (based on BMI) is based on the expectation of a certain common maximum muscle percentage.
I tend to be a bit suspicious when somebody tells me to expect weight loss, and then backpedals and says that maybe an unobservable substitution of muscle for fat took place instead.
Er, I don’t mean to be too harsh, but I tend to be a bit suspicious when somebody tells me to expect weight loss, and then backpedals and says that maybe an unobservable substitution of muscle for fat took place instead. I realize there are ways this could in principle be verified, if someone was willing to expend enough effort. It is nonetheless suspicious.
I’d be more suspicious of reports that exercise didn’t change body composition than that it did. That’s how exercise tends to work for most people. I’d be more skeptical of the initial claim for net weight loss, at least if it wasn’t qualified—that is usually not what I would expect in the short term.
I’d be more suspicious if the ‘unobservable’ was a little more difficult to verify.
Having muscle substituted for fat would result in better health or at least greater strength, I would think. Weight is (usually) just an easy way to measure a change in fat. I am trying successfully to lose more weight based on the assumption that the conditions for fat to form or persist depend largely on the balance of food intake and amount of exercise. If you maintain a consistent food intake, and maintain a consistent amount of exercise, and gain fat, then if it is physically safe to, either reduce food intake, or increase exercise. If given your current diet, and you slightly increase your exercise, you have proven that you do not lose fat, then I would assume that you should try changing the variables more, instead of giving up. We’re not exactly spending all day hunting and gathering anymore. I am going to increase my exercise and decrease my food (although I still invest in daily chocolate lifestyle enhancement, as you suggested as a sure bet as opposed to playing the lottery), and I am fairly sure before two weeks pass I will have lost five pounds.
Sorry for the delay, I got caught up in the Halloween spirit.
As for the following table, it lists the date and recorded weight on that date.
10/13--149.0 (lb.)
10/14--149.9
10/15--149.5
10/16--151.2
10/17--151.9
10/18--149.7
10/20--151.0
10/21--151.2
10/22--149.3
10/23--148.4
10/24--148.2
10/25--146.8
10/26--147.3
10/27--146.4
As you can see, I did not reach the goal that I set. The excuse—er, explanation, is that I made that claim on the very day I started a week-long vacation. Hence, I was much more sedentary than while working, and I ate more frequent and larger meals than on workdays. October 22 was the day I returned to work, and was also the day that I actually began losing weight, so my 2-week prediction actually had about a week cut off, and (anecdotally) shows both sides of the story in doing so. On the upside, I progressed pretty far in Paper Mario. If I had started the two weeks from the 22nd, I have lost about 7lb. since then. Hopefully this provides some data for anyone interested.
(Well, we’re talking about six hours a week, which ought to noticeably make you lose weight if you keep your calorie intake constant. But people who exercise six hours a week don’t usually keep their calorie intake constant.)
Wait, are you saying that aerobic exercise and strength training don’t have any significant effect on weight?
A person that I trust to be truthful, and who has done research on this topic, has pointed out to me that muscle has a higher density than fat. So if you experience, simultaneously, both an increase in muscle and a decrease in fat, then your weight may very well not change (or even increase, depending on the amount of muscle).
The same person tells me that exercise both increases muscle and decreases fat.
Yeah. After starting exercising regularly, lots of people who hadn’t seen me in a while thought I had lost weight, even if I had actually gained some.
Er, I don’t mean to be too harsh, but I tend to be a bit suspicious when somebody tells me to expect weight loss, and then backpedals and says that maybe an unobservable substitution of muscle for fat took place instead. I realize there are ways this could in principle be verified, if someone was willing to expend enough effort. It is nonetheless suspicious.
I understand your suspicion, and I don’t think you’re being too harsh at all. Scepticism on this point is more likely to improve understanding, after all.
There are ways to measure fat independantly of weight, however. The electrical conductance of fat and muscle differs—you can get scales that will measure both your weight and your conductance, and present you with a figure describing what percentage of your body weight is due to fat. There’s also a machine at my local gym that purports to measure body fat percentage (I’m not entirely sure how it works or how accurate it is), and I have found that if I fail to exercise over a long period of time, then the figure that it measures shows a general upwards trend.
Further reading: http://en.wikipedia.org/wiki/Body_fat_percentage#Measurement_techniques
Having done a bit of poking around on this subject, as far as I can tell the model is more or less as follows.
The human body is modelled as a collection of four elements; fat, muscle, water, and bone. The percentages of these different elements can change with diet, with exercise, with different types of exercise. Bone is pretty much constant (though apparently lack of calcium can cause trouble there); water fluctuates a lot. Fat and muscle are more controllable; a given diet and exercise regimen has a target fat percentage and muscle percentage. Starting on the diet/exercise causes the body to approach the target fat/muscle percentage in some manner (it may be asymptotic). For this purpose, lack of exercise also counts as an exercise regimen, and it is one that has a high fat percentage and a low muscle percentage (so if you have been exercising and stop, you gain a fair amount of fat). There is some complicated interaction between the diet and the exercise regimen here. There may be a genetic component also affecting the model.
Each of these four elements—fat, muscle, water, bone—has a certain density, a certain conductivity. There are certain percentages of these elements (I do not know what they are) that would lead to an optimal health (measured as the greatest life expectancy). Given a person’s height, and perhaps a few other measurements, one can estimate the total mass of bone (our skeletons are pretty much standard). From this, and given the optimal percentages, one can estimate the optimal mass of fat, of muscle, for the greatest life expectancy. (Water still fluctuates a lot, as I understand it).
Measurements of these percentages include weight, girth, electrical conductivity, and use of calipers. The first three of these figures measure quantities that are affected by all four percentages; a change in one factor can be masked by a change in the others.
All in all, it’s a far more complex problem than it looks like at first glance. Some heuristics have leaked out into common knowledge; things like “don’t eat too much fatty foods” and “exercise at least a bit”. I am not sure how accurate these heuristics are—presumably there is some reasoning backing them, possibly based on the model vaguely described above. I also suspect that the idea of the ideal weight (based on BMI) is based on the expectation of a certain common maximum muscle percentage.
Who told you to expect weight loss?
I’d be more suspicious of reports that exercise didn’t change body composition than that it did. That’s how exercise tends to work for most people. I’d be more skeptical of the initial claim for net weight loss, at least if it wasn’t qualified—that is usually not what I would expect in the short term.
I’d be more suspicious if the ‘unobservable’ was a little more difficult to verify.
Having muscle substituted for fat would result in better health or at least greater strength, I would think. Weight is (usually) just an easy way to measure a change in fat. I am trying successfully to lose more weight based on the assumption that the conditions for fat to form or persist depend largely on the balance of food intake and amount of exercise. If you maintain a consistent food intake, and maintain a consistent amount of exercise, and gain fat, then if it is physically safe to, either reduce food intake, or increase exercise. If given your current diet, and you slightly increase your exercise, you have proven that you do not lose fat, then I would assume that you should try changing the variables more, instead of giving up. We’re not exactly spending all day hunting and gathering anymore. I am going to increase my exercise and decrease my food (although I still invest in daily chocolate lifestyle enhancement, as you suggested as a sure bet as opposed to playing the lottery), and I am fairly sure before two weeks pass I will have lost five pounds.
Let us know how it works.
Sorry for the delay, I got caught up in the Halloween spirit. As for the following table, it lists the date and recorded weight on that date.
10/13--149.0 (lb.)
10/14--149.9
10/15--149.5
10/16--151.2
10/17--151.9
10/18--149.7
10/20--151.0
10/21--151.2
10/22--149.3
10/23--148.4
10/24--148.2
10/25--146.8
10/26--147.3
10/27--146.4
As you can see, I did not reach the goal that I set. The excuse—er, explanation, is that I made that claim on the very day I started a week-long vacation. Hence, I was much more sedentary than while working, and I ate more frequent and larger meals than on workdays. October 22 was the day I returned to work, and was also the day that I actually began losing weight, so my 2-week prediction actually had about a week cut off, and (anecdotally) shows both sides of the story in doing so. On the upside, I progressed pretty far in Paper Mario. If I had started the two weeks from the 22nd, I have lost about 7lb. since then. Hopefully this provides some data for anyone interested.
Hmmm. Thank you for the data.
As I already said...
(Well, we’re talking about six hours a week, which ought to noticeably make you lose weight if you keep your calorie intake constant. But people who exercise six hours a week don’t usually keep their calorie intake constant.)