The claim I’m making is more like: for every 1 species that reaches human-level intelligence, there will be N species that get pretty smart, then get stuck, where N is fairly large
My point is that – if N is fairly large – then it’s surprising that human-level intelligence evolved from one of the first ~3 species that became “pretty smart” (primates, dolphins, and probably something else).
If the Earth’s history would contain M>>N pretty smart species, then in expectation human-level intelligence should appear in the N:th species. If Earth’s history would contain M<<N pretty smart species, then we should expect human-level intelliigence to have equal probability to appear in any of the pretty smart species, so in expectation it should appear in the M/2:th pretty smart species.
Becoming “pretty smart” is apparently easy (because we’ve had >1 pretty smart species evolve so far) so in the rest of the Earth’s history, we would expect plenty more species to become pretty smart. If we expect M to be non-trivial (like maybe 30) then the fact that the 3rd pretty smart species reached human-level intelligence is evidence in favor of N~=2 over N>>M.
(Just trying to illustrate the argument at this point; not confident in the numbers given.)
Yeah, this seems like a reasonable argument. It feels like it really relies on this notion of “pretty smart” though, which is hard to pin down. There’s a case for including all of the following in that category:
And yet I’d guess that none of these were/are on track to reach human-level intelligence. Agree/disagree?
Uhm, haven’t thought that much about it. Not imminently, maybe, but I wouldn’t exclude the possibility that they could be on some long-winded path there.
It feels like it really relies on this notion of “pretty smart” though
I don’t think it depends that much on the exact definition of a “pretty smart”. If we have a broader notion of what “pretty smart” is, we’ll have more examples of pretty smart animals in our history (most of which haven’t reached human level intelligence). But this means both that the evidence indicates that each pretty smart animal has a smaller chance of reaching human-level intelligence, and that we should expect much more pretty smart animals in the future. E.g. if we’ve seen 30 pretty smart species (instead of 3) so far, we should expect maybe M=300 pretty smart species (instead of 30) to appear over Earth’s history. Humans still evolved from some species in the first 10th percentile, which still is an update towards N~=M/10 over N>>M.
The required assumptions for the argument are just:
humans couldn’t have evolved from a species with a level of intelligence less than X
species with X intelligence started appearing t years ago in evolutionary history
there are t’ years left where we expect such species to be able to appear
we assume the appearence rate of such species to be either constant or increasing over time
Then, “it’s easy to get humans from X” predicts t<<t’ while “it’s devilishly difficult to get humans from X” predicts t~=t’ (or t>>t’ if the appearance rate is strongly increasing over time). Since we observe t<<t’, we should update towards the former.
This is the argument that I was trying to make in the grand-grand-grand-parent. I then reformulated it from an argument about time into an argument about pretty smart species in the grand-parent to mesh better with your response.
My point is that – if N is fairly large – then it’s surprising that human-level intelligence evolved from one of the first ~3 species that became “pretty smart” (primates, dolphins, and probably something else).
If the Earth’s history would contain M>>N pretty smart species, then in expectation human-level intelligence should appear in the N:th species. If Earth’s history would contain M<<N pretty smart species, then we should expect human-level intelliigence to have equal probability to appear in any of the pretty smart species, so in expectation it should appear in the M/2:th pretty smart species.
Becoming “pretty smart” is apparently easy (because we’ve had >1 pretty smart species evolve so far) so in the rest of the Earth’s history, we would expect plenty more species to become pretty smart. If we expect M to be non-trivial (like maybe 30) then the fact that the 3rd pretty smart species reached human-level intelligence is evidence in favor of N~=2 over N>>M.
(Just trying to illustrate the argument at this point; not confident in the numbers given.)
Yeah, this seems like a reasonable argument. It feels like it really relies on this notion of “pretty smart” though, which is hard to pin down. There’s a case for including all of the following in that category:
Dolphins
Crows
Parrots
Elephants
Whales
Seals
Tigers
Some dogs
Octopuses
Some of the Pleistocene megafauna
And yet I’d guess that none of these were/are on track to reach human-level intelligence. Agree/disagree?
Uhm, haven’t thought that much about it. Not imminently, maybe, but I wouldn’t exclude the possibility that they could be on some long-winded path there.
I don’t think it depends that much on the exact definition of a “pretty smart”. If we have a broader notion of what “pretty smart” is, we’ll have more examples of pretty smart animals in our history (most of which haven’t reached human level intelligence). But this means both that the evidence indicates that each pretty smart animal has a smaller chance of reaching human-level intelligence, and that we should expect much more pretty smart animals in the future. E.g. if we’ve seen 30 pretty smart species (instead of 3) so far, we should expect maybe M=300 pretty smart species (instead of 30) to appear over Earth’s history. Humans still evolved from some species in the first 10th percentile, which still is an update towards N~=M/10 over N>>M.
The required assumptions for the argument are just:
humans couldn’t have evolved from a species with a level of intelligence less than X
species with X intelligence started appearing t years ago in evolutionary history
there are t’ years left where we expect such species to be able to appear
we assume the appearence rate of such species to be either constant or increasing over time
Then, “it’s easy to get humans from X” predicts t<<t’ while “it’s devilishly difficult to get humans from X” predicts t~=t’ (or t>>t’ if the appearance rate is strongly increasing over time). Since we observe t<<t’, we should update towards the former.
This is the argument that I was trying to make in the grand-grand-grand-parent. I then reformulated it from an argument about time into an argument about pretty smart species in the grand-parent to mesh better with your response.